Titanium implants are widely used in dental and orthopedic surgeries. However, implant failures still occur because of a lack of implant stability. The biomechanical properties of bone tissue located around the implant need to be assessed to better understand the osseointegration phenomena and anticipate implant failure.
View Article and Find Full Text PDFCalcif Tissue Int
October 2020
An increase in bone fracture risk has been reported in patients with diabetes. To evaluate an early effect of glucose intolerance on bone homeostasis, we have characterized bones from spontaneously diabetic torii (SDT) rats, an animal model of type 2 diabetes in comparison with Sprague Dawley (SD) rats as healthy control. Focusing on early effects of diabetes on bone elasticity, longitudinal wave velocities of animal bones were first determined by a micro-Brillouin scattering technique in a non-destructive way.
View Article and Find Full Text PDFMicro-Brillouin scattering was used to measure gigahertz ultrasonic wave velocities in the articular cartilage of a bovine femur. Velocities propagating parallel to the surface of the subchondral bone were 3.36-3.
View Article and Find Full Text PDF