Metal mesh devices (MMDs) are novel materials that enable the precise separation of particles by size. Structurally, MMDs consist of a periodic arrangement of square apertures of characteristic shapes and sizes on a thin nickel membrane. The present study describes the separation of aerosol particles using palm-top-size collection devices equipped with three types of MMDs differing in pore size.
View Article and Find Full Text PDFPoly(vinylbiphenyl)s bearing glycoside ligands at the side chains were prepared using the Suzuku coupling reaction. Effects of glycoside reactant concentration, halide species, glycoside species, and catalyst species on the incorporation of glycoside ligand into the polymer were investigated. The obtained glycopolymers exhibited specific binding to proteins corresponding to the glycoside ligands.
View Article and Find Full Text PDFThe bioinert interfaces that prevent adhesion of proteins and cells are important for biomaterial applications. In order to design a bioinert interface, the immobilization of an appropriate functional group and the control of molecular density is required. Dendrimer was modified with triethylene glycol (TEG) to display a dense brush structure.
View Article and Find Full Text PDFIn this study, a polyphenolic glycoside (α-glucosyl rutin) was used to form glyco-functionalized interfaces for protein binding. α-Glucosyl rutin was coated onto precious metals, metal oxides, and synthetic polymers, including polyethylene and polytetrafluoroethylene with poor surface modifiability. The glyco-functionalized interfaces bound strongly and specifically to concanavalin A and Bauhinia purpurea lectin, which have different carbohydrate specificities.
View Article and Find Full Text PDFPorous glycopolymers, "glycomonoliths", were prepared by radical polymerization based on polymerization-induced phase separation with an acrylamide derivative of α-mannose, acrylamide and cross-linker in order to investigate protein adsorption and separation. The porous structure was induced by a porogenic alcohol. The pore diameter and surface area were controlled by the type of alcohol.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2019
It is very important to examine carefully the potential adverse effects of engineered nanoparticles (NPs) on human health and environments. In the present study, we have investigated the impact of interfacial serum proteins on the cell membrane disruption induced by silica NPs of primary diameter of 55-68 nm in four types of cells (erythrocytes, Jurkat, B16F10, and J774.1).
View Article and Find Full Text PDFTwo types of metal mesh devices with hole diameters of 1.7 and 0.3 μm were prepared by an electroforming method.
View Article and Find Full Text PDFWhen proteins are attached to microstructures such as a metal mesh device, changes in their optical properties occur. These changes have been characterized based on actual measurements in the infrared region of the spectrum. We have previously theoretically and experimentally demonstrated the optical changes associated with streptavidin.
View Article and Find Full Text PDFA metal mesh device has a structure in which through-holes of the same shape are periodically placed on a thin metal film, and the selection of such a structure makes it possible to sense objects of various sizes. In this study, we showed the structure of the metal mesh device and the relationship between the detectable optical domain and the size of the objects to be measured. In addition, from measurement of changes in electromagnetic wave transmission characteristics of the metal mesh device due to specific adsorption of particles with a mean diameter of 100 nm with surface modification with Streptavidin to a metal mesh device fixed with biotin, we showed that even large particles can be sensed.
View Article and Find Full Text PDFWe mimic a living system wherein target molecules permeate through capillary and cells for chemical transformation. A monolithic porous gel (MPG) was easily prepared by copolymerization of gel matrix, tertiary amine, and cross-linking monomer in one-step synthesis. Interconnected capillaries existed in the MPG, enabling flow application with high permeability.
View Article and Find Full Text PDFSafety assessments of cosmetics are carried out by identifying possible harmful effects of substances in cosmetic products and assessing the exposure to products containing these substances. The present study provided data on the amounts of cosmetic products consumed in Japan to enhance and complement the existing data from Europe and the United States, i.e.
View Article and Find Full Text PDFBiosensing of protein adsorption with metal mesh device (MMD) was investigated by computational calculations and experiments. Electromagnetic field computation was carried out with a single unit cell of MMD. Equivalent circuit model of MMD on the single unit cell was assumed, and the biosensing with MMD was analyzed in detail by computational calculation and experimental measurements.
View Article and Find Full Text PDFIn this study, macroporous materials, called glycomonoliths, were produced from saccharide-containing monomers, and used for affinity bioseparation of proteins in a continuous-flow system. The porous structure formation of the glycomonoliths involved polymerization-induced phase separation of the polyacrylamide unit. The pore size could be controlled between several hundred nanometers and several micrometers by changing the alcohol used as the porogenic solvent during the preparation of the monolith.
View Article and Find Full Text PDFModification of the interface properties on hydroxyapatite and tooth enamel surfaces was investigated to fabricate bacterial resistance . A series of copolymers containing pendants of poly(ethylene glycol) methyl ether methacrylate (PEGMA) and ethylene glycol methacrylate phosphate (Phosmer) were polymerized by conventional free radical polymerization and changing the feed ratio of monomers. The copolymers were immobilized on hydroxyapatite and tooth enamel via the affinity of phosphate groups to hydroxyapatite to form the stable and durable polymer brushes on the surfaces.
View Article and Find Full Text PDFThe skin sensitization potential of chemicals has been determined with the use of the murine local lymph node assay (LLNA). However, in recent years public concern about animal welfare has led to a requirement for non-animal risk assessment systems for the prediction of skin sensitization potential, to replace LLNA. Selection of an appropriate in vitro test or in silico model descriptors is critical to obtain good predictive performance.
View Article and Find Full Text PDFTo develop a testing strategy incorporating the human cell line activation test (h-CLAT), direct peptide reactivity assay (DPRA) and DEREK, we created an expanded data set of 139 chemicals (102 sensitizers and 37 non-sensitizers) by combining the existing data set of 101 chemicals through the collaborative projects of Japan Cosmetic Industry Association. Of the additional 38 chemicals, 15 chemicals with relatively low water solubility (log Kow > 3.5) were selected to clarify the limitation of testing strategies regarding the lipophilic chemicals.
View Article and Find Full Text PDFA biosensor for protein detection was developed using antibody-immobilized metal mesh devices. Antihemoglobin antibodies were covalently immobilized on a metal mesh device. Extraordinary transmission with a dipped structure was observed for a metal mesh device immobilized with antihemoglobin antibodies as well as for the original metal mesh device.
View Article and Find Full Text PDFBiosensors for the detection of proteins and bacteria have been developed using glycopolymer-immobilized metal mesh devices. The trimethoxysilane-containing glycopolymer was immobilized onto a metal mesh device using the silane coupling reaction. The surface shape and transmittance properties of the original metal mesh device were maintained following the immobilization of the glycopolymer.
View Article and Find Full Text PDFA two-dimensional, glycopolymer-immobilized, photonic crystal (PhC) biosensor was developed for the detection of proteins. Glycopolymers with different conformations, homopolymers and sugar-incorporating nanoparticles were immobilized on the PhC using intermediate succinimide-containing polymers and proteins. The surface modification was analyzed in detail, and the sugar-protein interaction was detected by monitoring changes in the reflection intensity that was expressed by the two-dimensional PhC.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2013
The glycopolymers for glycosaminoglycan mimic were synthesized, and the inhibitory effects of Alzheimer's β-secretase (BACE-1) were examined. The regio-selective sulfation was conducted on N-acetyl glucosamine (GlcNAc), and the acrylamide derivatives were synthesized with the consequent sulfated GlcNAc. The glycopolymers were synthesized with acrylamide using radical initiator.
View Article and Find Full Text PDFThe availability of metal mesh device sensors has been investigated using surface-modified nickel mesh. Biotin was immobilized on the sensor surfaces consisting of silicon and nickel via a thiol-ene click reaction, known as the Michael addition reaction. Biotinylation on the maleimidated surface was confirmed by X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFPorous membranes with glycopolymer brushes were prepared as biomaterials for affinity separation. Glycopolymer brushes contained acrylic acid and D-mannose or N-acetyl-D-glucosamine, and were formed on substrates by surface-initiated atom transfer radical polymerization. The presence of glycopolymer brush was confirmed by X-ray photoelectron spectroscopy, contact angle, and ellipsometry measurements.
View Article and Find Full Text PDFA novel surface modification method was investigated. The surface of siliceous materials was modified using polystyrene, poly(acrylic acid), poly(N-isopropylacrylamide), and poly(p-acrylamidophenyl-α-mannoside) synthesized by reversible addition-fragmentation chain transfer polymerization. Thiol-terminated polymers were obtained by reduction of the thiocarbonate group using sodium borohydride.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2012
A copolymer with α-D-mannose (Man) and trimethoxysilane (TMS) units was synthesized for immobilization on siliceous matrices such as a sensor cell and membrane. Immobilization of the trimethoxysilane-containing copolymer on the matrices was readily performed by incubation at high heat. The recognition of lectin by poly(Man-r-TMS) was evaluated by measurement with a quartz crystal microbalance (QCM) and adsorption on an affinity membrane, QCM results showed that the mannose-binding protein, concanavalin A, was specifically bound on a poly(Man-r-TMS)-immobilized cell with a higher binding constant than bovine serum albumin.
View Article and Find Full Text PDF