Taste buds are localized in fungiform (FF), foliate (FL), and circumvallate (CV) papillae on the tongue, and taste buds also occur on the soft palate (SP). Mature elongate cells within taste buds are constantly renewed from stem cells and classified into three cell types, Types I, II, and III. These cell types are generally assumed to reside in respective taste buds in a particular ratio corresponding to taste regions.
View Article and Find Full Text PDFSox2 is proposed to regulate the differentiation of bipotential progenitor cells into taste bud cells. However, detailed expression of Sox2 remains unclear. In this report, Sox2 expression during taste bud development in the fungiform (FF), circumvallate (CV) and soft palate (SP) areas is examined together with Prox1.
View Article and Find Full Text PDFTastants reach the tip of taste bud cells through taste pores which are openings in the epithelium. We found Sprr2a is selectively expressed in the upper layer of the epithelium surrounding taste buds in the circumvallate papilla (CV) where the epithelium is organized into taste pores. Sprr2a is a member of a small proline-rich protein family, which is suggested to be involved in the restitution/migration phase of epithelial wound healing.
View Article and Find Full Text PDFThe effects of aging on the umami sensation were compared between the preference and neural responses from the greater superficial petrosal nerve (GSP innervating the soft palate) and the chorda tympani nerve (CT innervating the fungiform papillae) in the Sprague Dawley rat. A two-bottle preference test revealed that younger rats (5-12 weeks) preferred significantly 0.001 M 5'-inosine monophosphate (IMP), 0.
View Article and Find Full Text PDFNeural responses to sweet and bitter stimuli in the rat and mouse are compared to the expression of the molecular taste receptors, Tas1r2/Tas2rs. Integrated taste responses from the greater superficial petrosal nerve (GSP) innervating the soft palate (SP) and the chorda tympani (CT) nerve innervating the fungiform papillae (FF) were recorded in C57BL mice and SD rats. The sum of the phasic and tonic response magnitudes (SRM) was calculated by summating all relative mean responses to a concentration series of QHCl (10(-6)-10(-2)M) or Suc (10(-4)-1.
View Article and Find Full Text PDFBackground: Taste buds contain ∼60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I, glial cells; II, bitter/sweet/umami receptor cells; and III, sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined.
View Article and Find Full Text PDFTo clarify the regional differences in the expression and functional significance of Gα-gustducin in soft palate (SP) and fungiform (FF) taste buds, we examined the coexpression of Gα-gustducin with taste receptors and the impact of Gα-gustducin knockout (gKO) on neural responses to several sweet and bitter compounds. Sweet responses from both the greater superficial petrosal (GSP) and chorda tympani (CT) nerves in gKO mice were markedly depleted, reflecting overlapping expression of Gα-gustducin and Tas1r2. However, although Gα-gustducin was expressed in 87% and 88% of Tas2rs cells in the SP and FF, respectively, there were no statistically significant differences in the CT responses to quinine-HCl (QHCl) and denatonium (Den) between gKO and wild-type (WT) mice.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
October 2011
Taste buds contain three types of taste cells. Each type can respond to taste stimulation, and type II and III taste cells are electrically excitable. However, there are differences between the properties of type II and III taste cells.
View Article and Find Full Text PDFInositol 1,4,5-triphosphate-mediated calcium (IP3-Ca2+) signal cascade is an essential process in sweet, bitter, and umami taste signal transduction. Although the main components of this cascade have been identified, the candidate regulators of them in taste tissues are still unclear. In an effort to identify genes involved in taste signal transduction, we found that a gene encoding lymphoid-restricted membrane protein (Lrmp/Jaw1) was expressed in mouse taste tissues.
View Article and Find Full Text PDFGustducin, a G alpha subunit expressed in taste cells, is known as a key molecule for sweet, umami and bitter taste signal transduction. However, previous studies demonstrated that the contribution of gustducin to the sweet/umami responses in the posterior region of the tongue is less than that in the anterior region, implying the existence of another G alpha subunit mediating sweet/umami taste signal transduction. Here, we propose G alpha14, a member of G alpha q family, as the candidate mediator.
View Article and Find Full Text PDFAlthough embryonic expression of Shh in the fungiform papilla placodes has a critical role in fungiform papilla patterning, it remains unclear whether its appearance indicates the differentiation of the basal cells of taste buds. To examine the embryonic development of the basal cells, the expression of Shh, Prox1, and Mash1 was determined in the anterior tongue and soft palate in mouse embryos by in situ hybridization. In the anterior tongue, Prox1 was coexpressed with Shh from the beginning of Shh expression in the fungiform papilla placodes at E12.
View Article and Find Full Text PDFType III IP3 receptor (IP3R3) is one of the common critical calcium-signaling molecules for sweet, umami, and bitter signal transduction in taste cells, and the total IP3R3-expressing cell population represents all cells mediating these taste modalities in the taste buds. Although gustducin, a taste cell-specific G-protein, is also involved in sweet, umami, and bitter signal transduction, the expression of gustducin is restricted to different subsets of IP3R3-expressing cells by location in the tongue. Based on the expression patterns of gustducin and taste receptors in the tongue, the function of gustducin has been implicated primarily in bitter taste in the circumvallate (CV) papillae and in sweet taste in the fungiform (FF) papillae.
View Article and Find Full Text PDFMammalian taste buds are maintained through continuous cell renewal so that taste bud cells are constantly generated from progenitor cells throughout life. Taste bud cells are composed of basal cells and elongated cells. Elongated cells are derived from basal cells and contain taste receptor cells (TRC).
View Article and Find Full Text PDFNeural cell adhesion molecule (NCAM) is a type III cell marker in the taste buds. In order to clarify the cell type of Mash1-expressing cells in taste buds, expression of NCAM was examined in Mash1-expressing taste cells of adult mice in comparison with gustducin- and T1r3-expressing cells, using a combination of NCAM immunohistochemistry and in situ hybridization. About 98% of Mash1-expressing cells were NCAM immunopositive (IP), suggesting that Mash1-expressing cells should be categorized as type III cells.
View Article and Find Full Text PDFThe nerve-dependency of gene expression in mouse taste bud was examined through an analysis of changes in gene expression in and around the taste buds in circumvallate papillae after surgery of cranial nerve IXth (glossopharyngeal nerve). The number of cells expressing T1r3, gustducin, Mash1 and Nkx2.2 gradually decreased after denervation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2003
In order to understand differences in taste sensitivities of taste bud cells between the anterior and posterior part of tongue, it is important to analyze the regional expression patterns of genes related to taste signal transduction on the tongue. Here we examined the expression pattern of a taste receptor family, the T1r family, and gustducin in circumvallate and fungiform papillae of the mouse tongue using double-labeled in situ hybridization. Each member of the T1r family was expressed in both circumvallate and fungiform papillae with some differences in their expression patterns.
View Article and Find Full Text PDFLeptin is a hormone that regulates body weight homeostasis mainly via the hypothalamic functional leptin receptor Ob-Rb. Recently, we proposed that the taste organ is a new peripheral target for leptin. Leptin selectively inhibits mouse taste cell responses to sweet substances and thereby may act as a sweet taste modulator.
View Article and Find Full Text PDFLeptin is a hormone that regulates food intake, energy expenditure and body weight. Our previous studies have demonstrated that the taste organ is a new peripheral target for leptin in mice. Leptin selectively inhibits the responses of taste nerves and receptor cells to sweet substances without affecting responses to sour, salty, and bitter substances.
View Article and Find Full Text PDFIn mammals, taste buds are maintained by continuous turnover of cells, even in adulthood. Cell proliferation and differentiation continue to produce taste cells, which express various genes related to taste reception. We found the co-expression of Sonic hedgehog (Shh) with Prox1 and that of Nkx2.
View Article and Find Full Text PDFMale embryonic mice with mutations in the X-linked aristaless-related homeobox gene (Arx) developed with small brains due to suppressed proliferation and regional deficiencies in the forebrain. These mice also showed aberrant migration and differentiation of interneurons containing gamma-aminobutyric acid (GABAergic interneurons) in the ganglionic eminence and neocortex as well as abnormal testicular differentiation. These characteristics recapitulate some of the clinical features of X-linked lissencephaly with abnormal genitalia (XLAG) in humans.
View Article and Find Full Text PDFTaste bud cells have a limited lifespan and are continuously replaced just like other epithelial cells. Although there is some evidence that taste buds may arise from the local epithelium, taste receptor cells have neuronal properties. This implies that there must be a critical stage at which the epithelial precursor cells for taste receptor cells start to exhibit neural properties during the differentiation of the taste receptor cells.
View Article and Find Full Text PDF