Objectives: The purpose of this study was to evaluate the fit, fracture load and aging resistance of the monolithic zirconia tooth-borne crowns with conventional and high-speed sintering.
Methods: The Y-TZP block was machined and sintered with conventional and high-speed sintering furnace. The marginal and internal gap between the crown and abutment was measured using a microscope and a fit checking material.
The fluorescence and physical properties of thulium-doped zirconia were investigated. A standard grade of zirconia (TZ-3Y-E) and two translucent dental zirconia materials (Zpex and Zpex Smile) were examined. The specimens were prepared by addition of 0-1.
View Article and Find Full Text PDFThe purpose of this study was to examine the translucency and low-temperature degradation of silica-doped experimental Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) containing almost no alumina. The experimental Y-TZP samples were sintered at either 1,450 or 1,500°C. The samples of commercially available translucent Y-TZP and conventional Y-TZP were used as controls.
View Article and Find Full Text PDFThe purpose of this study is to evaluate the fitting accuracy and fracture resistance of crowns using a hybrid zirconia frame made of both porous and dense zirconia. Commercial semi-sintered zirconia, sintered dense zirconia and sintered hybrid zirconia were used. Sintered zirconia was milled using the CAD/CAM system, and semi-sintered zirconia was milled and sintered to fabricate molar crown frames.
View Article and Find Full Text PDFIn this study, two types of porous zirconia and dense zirconia were used. The flexural strength of non-layered zirconia specimens and those of the layered zirconia specimens with veneering porcelain were examined. Furthermore, the shear bond strength of veneering porcelain to zirconia was examined.
View Article and Find Full Text PDFObjectives: The purpose of this study is to evaluate the effects of multiple firings on the mechanical properties and microstructure of veneering ceramics used with zirconia frameworks.
Methods: Five different veneering ceramics for zirconia frameworks were used: Vintage ZR (ZR), Cerabien ZR (CZR), Vita VM9 (VM9), Cercon ceram KISS (KISS), IPS e.max ceram (e.
The aim of this study was to determine the machinability of new silica-doped Y-TZP by CAD/CAM and the resistance to low temperature degradation of the milled sample by comparing with a commercial HIP type Y-TZP material. The copings could be milled from silica-doped Y-TZP blocks without chipping, and there was no significant difference between the two types of Y-TZP materials in either the marginal or the inner gap between the abutment and the coping. After aging, the monoclinic content in the commercial Y-TZP copings increased from 25% before testing to 65%, while that of silica-doped Y-TZP copings slightly increased from 23% to 30%.
View Article and Find Full Text PDFYttria-based zirconia material (Y-TZP) widely used in dentistry, may degrade in a humid, low-temperature environment such as that in the oral cavity. The aim of this study was to compare the degradation of a new silica doped Y-TZP material with that of conventional Y-TZP by using accelerated aging tests at 200°C. The results of the accelerated tests revealed that after 50 hours of aging, the conventional Y-TZP samples had damaged surfaces that were weakened by 50 to 60%, while the silica-doped Y-TZP samples were only weakened by less than 20%.
View Article and Find Full Text PDF