Publications by authors named "Hirofumi Nobukuni"

A three-fold symmetric trioxotriangulene derivative with three pyridyl groups as coordinating sites was designed and synthesized. In a cyclic voltammetry measurement, the trioxotriangulene skeleton exhibited a multi-stage redox ability from neutral radical to radical tetra-anion species. In the zinc complex of monoanion species, three pyridyl groups coordinated to the zinc ion to build up a two-dimensional coordination network with a cavity larger than 12 Å in diameter.

View Article and Find Full Text PDF

Despite recent advances in the carbonization of organic crystalline solids like metal-organic frameworks or supramolecular frameworks, it has been challenging to convert crystalline organic solids into ordered carbonaceous frameworks. Herein, we report a route to attaining such ordered frameworks via the carbonization of an organic crystal of a Ni-containing cyclic porphyrin dimer (Ni-CPD). This dimer comprises two Ni-porphyrins linked by two butadiyne (diacetylene) moieties through phenyl groups.

View Article and Find Full Text PDF

Free-bases and a nickel(II) complex of phenothiazine-bridged cyclic porphyrin dimers bearing self-assembling 4-pyridyl groups (M2-Ptz-CPDPy(OCn); M = H2 or Ni, OCn = OC6 or OC3) at opposite meso-positions have been prepared as host molecules for fullerenes. The free-base dimer (H4-Ptz-CPDPy(OC6)) includes fullerenes with remarkably high association constants such as 3.9 ± 0.

View Article and Find Full Text PDF

A cyclic free-base porphyrin dimer H4-CPD(Py) (CPD = cyclic porphyrin dimer) linked by butadiyne moieties bearing 4-pyridyl groups self-assembles to form a novel porphyrin nanotube in the crystalline state. The cyclic molecules link together through nonclassical C-H⋅⋅⋅N hydrogen bonds and π–π interactions of the pyridyl groups along the crystallographic a axis. H4-CPD(Py) includes a C60 molecule in its cavity in solution.

View Article and Find Full Text PDF