Background/objectives: Understanding food preferences is important for weight management. However, methods for assessing food preferences are not well established, especially in Japan. This study aimed to examine detailed food preferences and their associations with actual food intake in non-obese and abdominal-obese subjects using a newly developed questionnaire tailored for the Japanese population.
View Article and Find Full Text PDFBlood levels of hypoxanthine (HX) have been suggested as potential biomarkers associated with intramuscular metabolic dynamics in response to exercise. This pilot randomized crossover trial (UMIN000036520) aimed to investigate the changes in plasma HX after whole-body vibration exercise (WBVE) and their relationships with body composition and muscle-related parameters, enrolling eighteen healthy male volunteers. In the WBVE-alone intervention, the study subjects performed 20-min of WBVE.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2024
Aim And Objective: Our recent report showed that soluble T-cadherin promotes pancreatic beta-cell proliferation. However, how and where the secretion of soluble T-cadherin is regulated remain unclear.
Methods And Results: Soluble T-cadherin levels significantly increased in leptin receptor-deficient db/db mice with hypoinsulinaemia or in wild-type mice treated with insulin receptor blockade by S961.
Pharmacological activation of hypoxia-inducible factor 1 (HIF-1), a hypoxia-responsive transcription factor, has attracted increasing attention due to its efficacy not only in renal anemia but also in various disease models. Our study demonstrated that a HIF-1 activator enhanced extracellular vesicle (EV) production from cultured endothelial cells synergistically with adiponectin, an adipocyte-derived factor, through both transcriptional induction and posttranscriptional stabilization of an adiponectin binding partner, T-cadherin. Increased EV levels were observed in wild-type mice but not in T-cadherin null mice after consecutive administration of roxadustat.
View Article and Find Full Text PDFVisceral fat accumulation is a major determinant of type 2 diabetes mellitus and cardiovascular diseases. Recent studies have reported that glutamate is the most elevated amino acid in the plasma amino acid profile in patients with obesity and/or visceral fat accumulation. Here, we show the relationship between plasma glutamate and the clinical features of patients with type 2 diabetes.
View Article and Find Full Text PDFAdiposity varies among individuals with the influence of diverse physiological, pathological, environmental, hormonal, and genetic factors, but a unified molecular basis remains elusive. Here, we identify HSP47, a collagen-specific chaperone, as a key determinant of body adiposity. HSP47 expression is abundant in adipose tissue; increased with feeding, overeating, and obesity; decreased with fasting, exercise, calorie restriction, bariatric surgery, and cachexia; and correlated with fat mass, BMI, waist, and hip circumferences.
View Article and Find Full Text PDFInsulin acts through the insulin receptor (IR) tyrosine kinase to exert its classical metabolic and mitogenic actions. Here, using receptors with either short or long deletion of the β-subunit or mutation of the kinase active site (K1030R), we have uncovered a second, previously unrecognized IR signaling pathway that is intracellular domain-dependent, but ligand and tyrosine kinase-independent (LYK-I). These LYK-I actions of the IR are linked to changes in phosphorylation of a network of proteins involved in the regulation of extracellular matrix organization, cell cycle, ATM signaling and cellular senescence; and result in upregulation of expression of multiple extracellular matrix-related genes and proteins, down-regulation of immune/interferon-related genes and proteins, and increased sensitivity to apoptosis.
View Article and Find Full Text PDFInsulin and IGF-1 receptors (IR and IGF1R) are highly homologous and share similar signaling systems, but each has a unique physiological role, with IR primarily regulating metabolic homeostasis and IGF1R regulating mitogenic control and growth. Here, we show that replacement of a single amino acid at position 973, just distal to the NPEY motif in the intracellular juxtamembrane region, from leucine, which is highly conserved in IRs, to phenylalanine, the highly conserved homologous residue in IGF1Rs, resulted in decreased IRS-1/PI3K/Akt/mTORC1 signaling and increased Shc/Gab1/MAPK cell cycle signaling. As a result, cells expressing L973F-IR exhibited decreased insulin-induced glucose uptake, increased cell growth, and impaired receptor internalization.
View Article and Find Full Text PDFXanthine oxidoreductase (XOR) is an enzyme that catalyzes hypoxanthine to xanthine and xanthine to uric acid, respectively. However, the underlying mechanisms of increased plasma XOR and its pathological roles in systemic diseases, such as atherosclerosis, are not fully understood. In this study, we found that changes in plasma XOR activity after bariatric surgery closely associated with those in liver enzymes, but not with those in BMI.
View Article and Find Full Text PDFInsulin and insulin-like growth factor 1 (IGF-1) receptors share many downstream signaling pathways but have unique biological effects. To define the molecular signals contributing to these distinct activities, we performed global phosphoproteomics on cells expressing either insulin receptor (IR), IGF-1 receptor (IGF1R), or chimeric IR-IGF1R receptors. We show that IR preferentially stimulates phosphorylations associated with mammalian target of rapamycin complex 1 (mTORC1) and Akt pathways, whereas IGF1R preferentially stimulates phosphorylations on proteins associated with the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases), and cell cycle progression.
View Article and Find Full Text PDFAims/introduction: Xanthine oxidoreductase (XOR) is an enzyme that catalyzes hypoxanthine and xanthine to xanthine and uric acid, respectively. Plasma XOR activity has recently been measured in humans. However, limited information is known about plasma XOR activity in patients with type 2 diabetes mellitus, and its changes after short-term glycemic control treatment.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
February 2019
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is an enzyme that specifically cleaves GPI anchors. Previous human studies suggested the relationship of GPI-PLD to insulin resistance, type 1 and type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD). However, the biological roles of GPI-PLD have not been elucidated.
View Article and Find Full Text PDFBackground: Although obesity-related type 2 diabetes mellitus (T2DM) and sarcopenia in the elderly have been increasing worldwide, the associations among visceral fat accumulation, skeletal muscle indices (mass, strength, and quality) and cardiovascular diseases in T2DM remain poorly investigated.
Methods: We enrolled 183 Japanese T2DM inpatients (126 men, 57 women; mean age 64.7 ± 12.
Objective: The production of uric acid in murine white adipose tissue (mWAT), and that such production was augmented in obese mice, was recently reported. However, little is known about the secretion of metabolites associated with purine catabolism in human WAT (hWAT). The present study analyzed this in hWAT.
View Article and Find Full Text PDFAdiponectin, an adipocyte-derived circulating protein, accumulates in vasculature, heart, and skeletal muscles through interaction with a unique glycosylphosphatidylinositol-anchored cadherin, T-cadherin. Recent studies have demonstrated that such accumulation is essential for adiponectin-mediated cardiovascular protection. Here, we demonstrate that the adiponectin/T-cadherin system enhances exosome biogenesis and secretion, leading to the decrease of cellular ceramides.
View Article and Find Full Text PDFBackground: Excess of visceral fat is a central factor in the pathogenesis of metabolic syndrome (MetS) and atherosclerosis. However, little is known about how much epicardial fat affects cardiometabolic disorders in comparison with visceral or subcutaneous fat.
Methods and results: Participants suspected as having angina pectoris underwent cardiac computed tomography (CT) imaging.
Adiponectin, an adipocyte-derived circulating protein, accumulates in the heart, vascular endothelium, and skeletal muscles through an interaction with T-cadherin (T-cad), a unique glycosylphosphatidylinositol-anchored cadherin. Recent studies have suggested that this interaction is essential for adiponectin-mediated cardiovascular protection. However, the precise protein-protein interaction between adiponectin and T-cad remains poorly characterized.
View Article and Find Full Text PDFSleep pattern has been shown to be associated with type 2 diabetes mellitus. Here, we investigated the difference in bedtime, waking time and estimated sleep duration in type 2 diabetes mellitus patients with or without visceral fat accumulation, using a questionnaire on sleep patterns. The study participants were 59 Japanese type 2 diabetes mellitus patients (men/women 34/25, age 64.
View Article and Find Full Text PDFObesity is closely associated with various metabolic disorders. However, little is known about abnormalities in the metabolic change of obese adipose tissue. Here we use static metabolic analysis and metabolic turnover analysis to assess metabolic dynamics in obese mice.
View Article and Find Full Text PDFAims: Adiponectin, an adipocyte-specific secretory protein, abundantly exists in the blood stream while its concentration paradoxically decreases in obesity. Hypoadiponectinemia is one of risks of cardiovascular diseases. However, impact of serum adiponectin concentration on acute ischemic myocardial damages has not been fully clarified.
View Article and Find Full Text PDFBackground: Visceral fat plays a central role in the development of metabolic syndrome and atherosclerotic cardiovascular diseases. The association of visceral fat accumulation with cardio-metabolic diseases has been reported, but the impact of visceral fat on the gene expression profile in peripheral blood cells remains to be determined. The aim of this study was to determine the effects of visceral fat area (VFA) and subcutaneous fat area (SFA) on the gene expression profile in peripheral blood cells of obese subjects.
View Article and Find Full Text PDFBackground: Visceral fat accumulation is a major etiological factor in the progression of type 2 diabetes mellitus and atherosclerosis. We described previously visceral fat accumulation and multiple cardiovascular risk factors in a considerable number of Japanese non-obese subjects (BMI <25 kg/m(2)). Here, we investigated differences in systemic arteriosclerosis, serum adiponectin concentration, and eating behavior in type 2 diabetic patients with and without visceral fat accumulation.
View Article and Find Full Text PDFBackground: Liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, has been shown to possess pleiotropic effects including body weight reduction. However, long-term effect of liraglutide on body weight and glycemic control has not been elucidated in Japanese type 2 diabetes (T2D) subjects. Present study investigates whether liraglutide treatment maintains the body weight-decreasing and glucose-lowering effects for 2 years in Japanese T2D subjects.
View Article and Find Full Text PDF