Publications by authors named "Hirofumi Morishita"

Frontal cortical circuits undergo prolonged maturation across childhood and adolescence; however, it remains unknown what specific changes are occurring at the circuit level to establish adult cognitive function. With the recent advent of circuit dissection techniques, it is now feasible to examine circuit-specific changes in connectivity, activity, and function in animal models. Here, we propose that the balance of local and long-range inputs onto frontal cognitive circuits is an understudied metric of circuit maturation.

View Article and Find Full Text PDF

There is a major gap in our understanding of how childhood social isolation causes adult social dysfunction. To stimulate future developmental mechanistic studies, we present two conceptual models which highlight that isolation can disrupt developmental events that are concurrent (social deprivation model) or subsequent (developmental mismatch model) to adverse experience.

View Article and Find Full Text PDF

Despite the rapid and sustained antidepressant effects of ketamine and its metabolites, their underlying cellular and molecular mechanisms are not fully understood. Here, we demonstrate that the sustained antidepressant-like behavioral effects of (2S,6S)-hydroxynorketamine (HNK) in repeatedly stressed animal models involve neurobiological changes in the anterior paraventricular nucleus of the thalamus (aPVT). Mechanistically, (2S,6S)-HNK induces mRNA expression of extrasynaptic GABA receptors and subsequently enhances GABA-receptor-mediated tonic currents, leading to the nuclear export of histone demethylase KDM6 and its replacement by histone methyltransferase EZH2.

View Article and Find Full Text PDF

As psychedelic compounds gain traction in psychiatry, there is a need to consider the active mechanism to explain the effect observed in randomized clinical trials. Traditionally, biological psychiatry has asked how compounds affect the causal pathways of illness to reduce symptoms and therefore focus on analysis of the pharmacologic properties. In psychedelic-assisted psychotherapy (PAP), there is debate about whether ingestion of the psychedelic alone is thought to be responsible for the clinical outcome.

View Article and Find Full Text PDF

Emerging research on neuroplasticity processes in psychosis spectrum illnesses-from the synaptic to the macrocircuit levels-fill key gaps in our models of pathophysiology and open up important treatment considerations. In this selective narrative review, we focus on three themes, emphasizing alterations in spike-timing dependent and Hebbian plasticity that occur during adolescence, the critical period for prefrontal system development: (1) Experience-dependent dysplasticity in psychosis emerges from activity decorrelation within neuronal ensembles. (2) Plasticity processes operate bidirectionally: deleterious environmental and experiential inputs shape microcircuits.

View Article and Find Full Text PDF

Top-down attention is a dynamic cognitive process that facilitates the detection of the task-relevant stimuli from our complex sensory environment. A neural mechanism capable of deployment under specific task-demand conditions would be crucial to efficiently control attentional processes and improve promote goal-directed attention performance during fluctuating attentional demand. Previous studies have shown that frontal top-down neurons projecting from the anterior cingulate area (ACA) to the visual cortex (VIS; ACA) are required for visual attentional behavior during the 5-choice serial reaction time task (5CSRTT) in mice.

View Article and Find Full Text PDF

As psychedelic compounds gain traction in psychiatry, there is a need to consider the active mechanism to explain the effect observed in randomized clinical trials. Traditionally, biological psychiatry has asked how compounds affect the causal pathways of illness to reduce symptoms and therefore focus on analysis of the pharmacologic properties. In psychedelic-assisted psychotherapy (PAP), there is debate about whether ingestion of the psychedelic alone is thought to be responsible for the clinical outcome.

View Article and Find Full Text PDF

Social dominance hierarchies are a common adaptation to group living and exist across a broad range of the animal kingdom. Social dominance is known to rely on the prefrontal cortex (PFC), a brain region that shows a protracted developmental trajectory in mice. However, it is unknown to what extent the social dominance hierarchy is plastic across postnatal development and how it is regulated.

View Article and Find Full Text PDF

Aim: Attention is a goal-directed cognitive process that facilitates the detection of task-relevant sensory stimuli from dynamic environments. Anterior cingulate cortical area (ACA) is known to play a key role in attentional behavior, but the specific circuits mediating attention remain largely unknown. As ACA modulates sensory processing in the visual cortex (VIS), we aim to test a hypothesis that frontal top-down neurons projecting from ACA to VIS (ACA ) contributes to visual attention behavior through chemogenetic approach.

View Article and Find Full Text PDF

Cognitive function depends on frontal cortex development; however, the mechanisms driving this process are poorly understood. Here, we identify that dynamic regulation of the nicotinic cholinergic system is a key driver of attentional circuit maturation associated with top-down frontal neurons projecting to visual cortex. The top-down neurons receive robust cholinergic inputs, but their nicotinic tone decreases following adolescence by increasing expression of a nicotinic brake, shifts a balance between local and long-range inputs onto top-down frontal neurons following adolescence and promotes the establishment of attentional behavior in adulthood.

View Article and Find Full Text PDF

The frontal cortex, especially the anterior cingulate cortex area (ACA), is essential for exerting cognitive control after errors, but the mechanisms that enable modulation of attention to improve performance after errors are poorly understood. Here we demonstrate that during a mouse visual attention task, ACA neurons projecting to the visual cortex (VIS; ACA neurons) are recruited selectively by recent errors. Optogenetic manipulations of this pathway collectively support the model that rhythmic modulation of ACA neurons in anticipation of visual stimuli is crucial for adjusting performance following errors.

View Article and Find Full Text PDF

Although ubiquitous in biological studies, the enhanced green and yellow fluorescent proteins (EGFP and EYFP) were not specifically optimized for neuroscience, and their underwhelming brightness and slow expression in brain tissue limits the fidelity of dendritic spine analysis and other indispensable techniques for studying neurodevelopment and plasticity. We hypothesized that EGFP's low solubility in mammalian systems must limit the total fluorescence output of whole cells, and that improving folding efficiency could therefore translate into greater brightness of expressing neurons. By introducing rationally selected combinations of folding-enhancing mutations into GFP templates and screening for brightness and expression rate in human cells, we developed mGreenLantern, a fluorescent protein having up to sixfold greater brightness in cells than EGFP.

View Article and Find Full Text PDF

Juvenile social isolation reduces sociability in adulthood, but the underlying neural circuit mechanisms are poorly understood. We found that, in male mice, 2 weeks of social isolation immediately following weaning leads to a failure to activate medial prefrontal cortex neurons projecting to the posterior paraventricular thalamus (mPFC→pPVT) during social exposure in adulthood. Chemogenetic or optogenetic suppression of mPFC→pPVT activity in adulthood was sufficient to induce sociability deficits without affecting anxiety-related behaviors or preference toward rewarding food.

View Article and Find Full Text PDF

Frontal top-down cortical neurons projecting to sensory cortical regions are well-positioned to integrate long-range inputs with local circuitry in frontal cortex to implement top-down attentional control of sensory regions. How adolescence contributes to the maturation of top-down neurons and associated local/long-range input balance, and the establishment of attentional control is poorly understood. Here we combine projection-specific electrophysiological and rabies-mediated input mapping in mice to uncover adolescence as a developmental stage when frontal top-down neurons projecting from the anterior cingulate to visual cortex are highly functionally integrated into local excitatory circuitry and have heightened activity compared to adulthood.

View Article and Find Full Text PDF

The limitation of plasticity in the adult brain impedes functional recovery later in life from brain injury or disease. This pressing clinical issue may be resolved by enhancing plasticity in the adult brain. One strategy for triggering robust plasticity in adulthood is to reproduce one of the hallmark physiological events of experience-dependent plasticity observed during the juvenile critical period: to rapidly reduce the activity of parvalbumin (PV)-expressing interneurons and disinhibit local excitatory neurons.

View Article and Find Full Text PDF

The tens of thousands of industrial and synthetic chemicals released into the environment have an unknown but potentially significant capacity to interfere with neurodevelopment. Consequently, there is an urgent need for systematic approaches that can identify disruptive chemicals. Little is known about the impact of environmental chemicals on critical periods of developmental neuroplasticity, in large part, due to the challenge of screening thousands of chemicals.

View Article and Find Full Text PDF

Objectives: There is no standard chemotherapy for advanced pancreatic cancer (APC) after gemcitabine plus nab-paclitaxel (GP) failure. The aim of this study was to evaluate the efficacy and safety of FOLFIRINOX (5-Fluorouracil, leucovorin, irinotecan, and oxaliplatin) (5-Fluorouracil, leucovorin, irinotecan, and oxaliplatin) (FFX) and modified FFX (mFFX) for APC patients after GP failure.

Methods: We retrospectively evaluated the efficacy and safety of FFX in APC patients who were refractory or intolerant of GP.

View Article and Find Full Text PDF

Social isolation during the juvenile critical window is detrimental to proper functioning of the prefrontal cortex (PFC) and establishment of appropriate adult social behaviors. However, the specific circuits that undergo social experience-dependent maturation to regulate social behavior are poorly understood. We identify a specific activation pattern of parvalbumin-positive interneurons (PVIs) in dorsal-medial PFC (dmPFC) prior to an active bout, or a bout initiated by the focal mouse, but not during a passive bout when mice are explored by a stimulus mouse.

View Article and Find Full Text PDF
Article Synopsis
  • Takotsubo cardiomyopathy (TCM), also known as stress-induced cardiomyopathy, is a rare condition that can occur following an infusion reaction.
  • In this case, a 65-year-old man with gastric cancer experienced an infusion reaction after receiving trastuzumab monotherapy, leading to significant heart problems.
  • His diagnosis was confirmed through various heart tests that showed abnormal heart activity and elevated biomarkers, marking this as the first documented instance of TCM related to an infusion reaction.
View Article and Find Full Text PDF

Abuse, neglect, and other forms of early life stress (ELS) significantly increase risk for psychiatric disorders including depression. In this study, we show that ELS in a postnatal sensitive period increases sensitivity to adult stress in female mice, consistent with our earlier findings in male mice. We used RNA-sequencing in the ventral tegmental area, nucleus accumbens, and prefrontal cortex of male and female mice to show that adult stress is distinctly represented in the brain's transcriptome depending on ELS history.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how common genetic variants related to schizophrenia (SZ) interact to influence complex genetic disorders using human induced pluripotent stem cells (iPSCs).
  • Researchers utilized CRISPR technology to focus on specific SZ-related genes and found that these genes impact neuronal function and gene expression differently based on cell type.
  • The findings suggest that there is a significant interaction between common and rare genetic variants in contributing to the risk of psychiatric diseases, potentially applicable to other complex genetic disorders as well.
View Article and Find Full Text PDF

Microglia, the brain resident macrophages, critically shape forebrain neuronal circuits. However, their precise function in the cerebellum is unknown. Here we show that human and mouse cerebellar microglia express a unique molecular program distinct from forebrain microglia.

View Article and Find Full Text PDF