The most characteristic feature of the hepatitis C virus (HCV) genome in patients with chronic hepatitis C is its remarkable variability and diversity. To better understand this feature, we performed genetic analysis of HCV replicons recovered from two human hepatoma HuH-7-derived cell lines after 1, 3, 5, 7, and 9 years in culture: The cell lines 50-1 and sO harbored HCV 1B-1 and O strain-derived HCV replicons established in 2002 and 2003, respectively. The results revealed that genetic variations in both replicons accumulated in a time-dependent manner at a constant rate despite the maintenance of moderate diversity (less than 1.
View Article and Find Full Text PDFBackground: Among human T cell leukemia virus type 1 (HTLV-1)-infected individuals, there is an association between HTLV-1 tax subgroups (subgroup-A or subgroup-B) and the risk of HAM/TSP in the Japanese population. To investigate the role of HTLV-1 subgroups in viral pathogenesis, we studied the functional difference in the subgroup-specific viral transcriptional regulators Tax and HBZ using microarray analysis, reporter gene assays, and evaluation of viral-host protein-protein interaction.
Results: (1) Transcriptional changes in Jurkat Tet-On human T-cells that express each subgroup of Tax or HBZ protein under the control of an inducible promoter revealed different target gene profiles; (2) the number of differentially regulated genes induced by HBZ was 2-3 times higher than that induced by Tax; (3) Tax and HBZ induced the expression of different classes of non-coding RNAs (ncRNAs); (4) the chemokine CXCL10, which has been proposed as a prognostic biomarker for HAM/TSP, was more efficiently induced by subgroup-A Tax (Tax-A) than subgroup-B Tax (Tax-B), in vitro as well as in unmanipulated (ex vivo) PBMCs obtained from HAM/TSP patients; (5) reporter gene assays indicated that although transient Tax expression in an HTLV-1-negative human T-cell line activated the CXCL10 gene promoter through the NF-κB pathway, there was no difference in the ability of each subgroup of Tax to activate the CXCL10 promoter; however, (6) chromatin immunoprecipitation assays showed that the ternary complex containing Tax-A is more efficiently recruited onto the promoter region of CXCL10, which contains two NF-κB binding sites, than that containing Tax-B.
Background: Chemokine (C-C motif) ligand 1 (CCL1) is produced by activated monocytes/ macrophages and T-lymphocytes, and acts as a potent attractant for Th2 cells and a subset of T-regulatory (Treg) cells. Previous reports have indicated that CCL1 is overexpressed in adult T-cell leukemia cells, mediating an autocrine anti-apoptotic loop. Because CCL1 is also known as a potent chemoattractant that plays a major role in inflammatory processes, we investigated the role of CCL1 in the pathogenesis of human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP).
View Article and Find Full Text PDFThe mechanisms of hepatitis C virus (HCV)-associated hepatocarcinogenesis and disease progression are unclear. We previously observed that the expression level of carboxypeptidase B2 (CPB2) gene was remarkably suppressed by persistent HCV RNA replication in human hepatoma cell line Li23- derived cells. The results of the present study demonstrated that the CPB2 expression in patients with chronic hepatitis C was inversely correlated with several risk factors of hepatic fibrosis or steatosis, although ectopic CPB2 expression did not suppress the expression of fibrogenic or lipogenic genes.
View Article and Find Full Text PDFBackground: Ribavirin (RBV) is a potential partner of interferon-based therapy and recently approved therapy using direct acting antivirals for patients with chronic hepatitis C. However, the precise mechanisms underlying RBV action against hepatitis C virus (HCV) replication are not yet understood. To clarify this point, we attempted to develop RBV-resistant cells from RBV-sensitive HCV RNA-replicating cells.
View Article and Find Full Text PDFBackground: The most distinguishing genetic feature of hepatitis C virus (HCV) is its remarkable diversity and variation. To understand this feature, we previously performed genetic analysis of HCV in the long-term culture of human hepatoma HuH-7-derived HCV RNA-replicating cell lines. On the other hand, we newly established HCV RNA-replicating cell lines using human hepatoma Li23 cells, which were distinct from HuH-7 cells.
View Article and Find Full Text PDFReactive oxygen species play a key role in the response of plants to abiotic stress conditions. Their level is controlled in Arabidopsis thaliana by a large network of genes that includes the H(2)O(2)-scavenging enzymes cytosolic ascorbate peroxidase (APX) 1 and 2. Although the function of APX1 has been established under different growth conditions, genetic evidence for APX2 function, as well as for the mode of cooperation between APX1 and APX2, is very limited.
View Article and Find Full Text PDFPersistent hepatitis C virus (HCV) infection frequently causes hepatocellular carcinoma. However, the mechanisms of HCV-associated hepatocarcinogenesis and disease progression are unclear. Although the human hepatoma cell line, HuH-7, has been widely used as the only cell culture system for robust HCV replication, we recently developed new human hepatoma Li23 cell line-derived OL, OL8, OL11, and OL14 cells, in which genome-length HCV RNA (O strain of genotype 1b) efficiently replicates.
View Article and Find Full Text PDFBrief periods of heat stress of even a few days can have a detrimental effect on yield production worldwide, causing devastating economic and societal impacts. Here we report on the identification of a new heat-response regulon in plants controlled by the multiprotein bridging factor 1c (MBF1c) protein of Arabidopsis thaliana. Members of the highly conserved MBF1 protein family function as non-DNA-binding transcriptional co-activators involved in regulating metabolic and development pathways in different organisms from yeast to humans.
View Article and Find Full Text PDF