The Duchenne muscular dystrophy (DMD) gene encodes dystrophin, which is a protein defective in DMD patients, as well as a number of shorter isoforms, which have been shown to be expressed in various non-muscle, primarily neural, tissues. As of yet, the physiological function of the various dystrophin isoforms is not fully understood. In the present study, we investigated the neurological phenotype that arises in the DMD-null mice, where expression of all dystrophin isoforms had been disrupted.
View Article and Find Full Text PDFA major challenge of the post-genomic era is the functional characterization of anonymous open reading frames (ORFs) identified by the Human Genome Project. In this context, there is a strong requirement for the development of technologies that enhance our ability to analyze gene functions at the level of the whole organism. Here, we describe a rapid and efficient procedure to generate transgenic chimaeric mice that continuously secrete a foreign protein into the systemic circulation.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is caused by mutation in the 2.4-Mb dystrophin (DMD) gene . This gene encodes a number of tissue-specific isoforms of dystrophin generated by transcription from at least seven promoters and also by alternative splicing.
View Article and Find Full Text PDF