Background: Opioid and dopamine systems play crucial roles in reward. Similarities and differences in the neural mechanisms of reward that are mediated by these 2 systems have remained largely unknown. Thus, in the present study, we investigated the differences in reward function in both µ-opioid receptor knockout mice and dopamine transporter knockout mice, important molecules in the opioid and dopamine systems.
View Article and Find Full Text PDFLong-lasting neuronal plasticity as well as long-term memory (LTM) requires de novo synthesis of proteins through dynamic regulation of gene expression. cAMP-responsive element (CRE)-mediated gene transcription occurs in an activity-dependent manner and plays a pivotal role in neuronal plasticity and LTM in a variety of species. To study the physiological role of inducible cAMP early repressor (ICER), a CRE-mediated gene transcription repressor, in neuronal plasticity and LTM, we generated two types of ICER mutant mice: ICER-overexpressing (OE) mice and ICER-specific knock-out (KO) mice.
View Article and Find Full Text PDFWe examined the effects of acute injections of competitive N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonovaleric acid (APV) into the dorsal hippocampus on contextual fear conditioning and classical eyeblink conditioning in C57BL/6 mice. When injected 10 to 40 min before training, APV severely impaired contextual fear conditioning. Thus, APV injection under these conditions was sufficient to suppress hippocampal NMDA receptors.
View Article and Find Full Text PDFDopamine (DA) plays roles in circuits that are important for brain reward and in striatal brain regions that are important for certain types of habit learning. These processes in wildtype, heterozygous, and homozygous dopamine transporter knockout (DAT-KO) mice, which were mildly food deprived and allowed to make nose-poke responses for food reinforcement, were studied. The mice were given 20-min sessions of daily (a) baseline exposure to the operant chambers, (b) acquisition of nose-poke responses in which responses were reinforced under a fixed ratio (FR5) schedule, (c) a progressive ratio schedule in which the number of responses required to obtain food was gradually increased, and (d) extinction of responses in which nose pokes were not followed by food.
View Article and Find Full Text PDFNB-2, a member of the contactin subgroup in the immunoglobulin superfamily, is expressed specifically in the postnatal nervous system, reaching a maximum level at 3 weeks postnatal. NB-2 displays neurite outgrowth-promoting activity in vitro. To assess its function in the nervous system, we generated mutant mice in which a part of the NB-2 gene was ablated and replaced with the tau-LacZ gene.
View Article and Find Full Text PDFMice become highly susceptible to audiogenic seizures (AGS) after being exposed to intense, high-frequency noise during a critical period of early life (priming). To determine the critical site for AGS priming in the auditory brainstem, animals in the experimental group were primed at 21 days, and the tone-induced Fos immunoreactivity was examined 1, 7, and 14 days after priming as an index of excitability of neurons. Enhanced Fos immunoreactivity was observed in the inferior colliculus (IC) of the primed mice 7 and 14 days after priming as compared to that of non-primed mice and attenuated Fos expression was observed 1 day after priming.
View Article and Find Full Text PDFOpioids and ethanol have been used since ancient times for pain relief. Opioid signaling is mediated by various effectors, including G protein-activated inwardly rectifying potassium (GIRK) channels, adenylyl cyclases, voltage-dependent calcium channels, phospholipase Cbeta(PLCbeta), and mitogen-activated protein kinases, although it has been unclear which effector mediates the analgesic effects of opioids. Ethanol induces a variety of physiological phenomena via various proteins, including GIRK channels rather than via membrane lipids.
View Article and Find Full Text PDFGiven the evidence that the inferior colliculus (IC) and superior colliculus (SC) seem to play key roles in connecting auditory pathways and seizure output pathways in the neuronal network for audiogenic seizures (AS) in rats, we examined Fos activation in GABAergic cells and cells immunopositive for glutamate N-methyl-D-aspartate (NMDA) receptors in the IC and SC following AS using the double-labeling procedure. Generalized tonic-clonic seizures (GTCS), which developed as an advanced form of AS in some of the susceptible rats, induced an increase in Fos expression in three IC substructures-the dorsal cortex of IC (DCIC), central nucleus of IC (CIC), and external cortex of IC (ECIC)-and in one SC substructure, the deep gray layer of SC (DpG). Compared with the rats showing GTCS, rats exhibiting wild running (WR) without proceeding to GTCS showed a different pattern of AS-induced Fos expression.
View Article and Find Full Text PDFIt has been shown that the N-methyl-D-asparate (NMDA) receptor in the inferior colliculus is involved in the induction of audiogenic seizures (AGS). In the present study we examined audiogenic-like seizure susceptibility in GluR epsilon 1 null KO adult mice (n=32) and wild-type adult mice (n=28) by electrically stimulating the inferior colliculus (IC). Threshold current intensities of the GluR epsilon 1 KO mice for wild running, clonic and tonic seizures were higher than those of wild-type mice.
View Article and Find Full Text PDFHum Mol Genet
May 2002
Mutations in the EPM2A gene encoding a dual-specificity phosphatase (laforin) cause Lafora disease (LD), a progressive and invariably fatal epilepsy with periodic acid-Schiff-positive (PAS+) cytoplasmic inclusions (Lafora bodies) in the central nervous system. To study the pathology of LD and the functions of laforin, we disrupted the Epm2a gene in mice. At two months of age, homozygous null mutants developed widespread degeneration of neurons, most of which occurred in the absence of Lafora bodies.
View Article and Find Full Text PDFFyn tyrosine kinase deficient mice are known to show increased fearfulness. We investigated the fear response of these mice using the light-potentiation of the acoustic startle response (ASR) and examined its neurochemical correlates using in vivo microdialysis. Female homozygous Fyn-deficient mice showed an enhancement of the startle amplitude under a bright light while heterozygotes and wild-types did not show such a change.
View Article and Find Full Text PDF