Gadolinium complexed with naturally occurring, negatively charged humic substances (humic and fulvic acids) was collected from 500 mL of sample solution onto a column packed with 150 mg of a strongly basic anion-exchanger (QAE-Sephadex A-25). A Gd-based magnetic resonance imaging contrast agent (diethylenetriamine-N,N,N',N″,N″-pentaacetato aquo gadolinium(III), Gd-DTPA(2-)) was simultaneously collected on the same column. The Gd-DTPA complex was desorbed by anion-exchange with 50mM tetramethylammonium sulfate, leaving the Gd-humic complexes on the column.
View Article and Find Full Text PDFThe analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS).
View Article and Find Full Text PDFThe analysis of seawater for trace metals is important for pollution monitoring and better understanding of marine systems. The present paper describes an efficient preconcentration method for the determination of trace metals in seawater. Trace metals [Ni(II), Cu(II), Ga(III), Cd(II), Pb(II), and Bi(III)] in 1,000 mL of seawater sample were complexed with ammonium pyrrolidinedithiocarbamate and sorbed onto silica particles covered with cetyltrimethylammonium chloride.
View Article and Find Full Text PDFTo an iron sample solution was added polyoxyethylene-4-isononylphenoxy ether (PONPE, nonionic surfactant, average number of ethylene oxides 7.5) and the surfactant was aggregated by the addition of lithium chloride. The iron(III) matrix was collected into the condensed surfactant phase in >99.
View Article and Find Full Text PDFThiacalix[4]arenetetrasulfonate was treated with Ce(IV) in water at pH 9.5 to give novel phosphoester-hydrolyzing complexes. The dinuclear Ce(IV) complex promoted the hydrolysis of p-nitrophenyl phosphate with a turnover frequency of 6.
View Article and Find Full Text PDFTraces of P(V) and As(V) in sample solutions were converted into heteropoly molybdic acids at pH 1.5 and collected onto polyoxyethylene(20)-4-isononylphenoxy ether-coated Amberlite XAD-4 particles. The desorption was carried out with 0.
View Article and Find Full Text PDFSulfonylcalix[4]arenetetrasulfonate (SO(2)CAS) has been examined as a pre-column chelating reagent for ultratrace determination of metal ions by ion-pair reversed-phase high-performance liquid chromatography with spectrophotometric detection. Metal ions were converted into the SO(2)CAS chelates in an acetic buffer solution (pH 4.7).
View Article and Find Full Text PDFDithizone-impregnated admicelles were prepared by mixing silica particles with dithizone and cetyltrimethylammonium chloride in 0.1 mol L(-1) aqueous ammonia. The resulting admicelles were added to 1000 mL of sample solution and dispersed by stirring for 15 min.
View Article and Find Full Text PDFA new redox-driven type of emulsion liquid membrane separation is described. Milligram amounts of copper(II) in 0.2 M hydrochloric acid were reduced to copper(I) in the presence of ascorbic acid (1 M identical with 1 mol l(-1)).
View Article and Find Full Text PDFAmberlite XAD-7 resin was impregnated with p-tert-butylsulfinylcalix[4]arene. Niobium(V) was collected on the impregnated resin in yields of more than 90% around pH 5.4, whereas tantalum(V) was negligibly collected.
View Article and Find Full Text PDFAdmicellar sorbents for the removal of an iron matrix were prepared for the determination of trace impurities in high-purity iron. A 1.0-g amount of Amberlite XAD-4 (macroreticular styrene-divinylbenzene copolymer) was coated with 0.
View Article and Find Full Text PDFAn emulsion liquid membrane method has been developed for separating traces of heavy metals from an iron matrix. A 1.0-mL volume of aqueous iron(III) solution (pH 2.
View Article and Find Full Text PDFA rapid column-adsorption method has been developed for concentrating traces of copper, cadmium, and lead in water prior to their determinations by graphite-furnace atomic-absorption spectrometry. The adsorbent used was prepared by loading a strongly basic anion-exchanger QAE-Sephadex A-25 (50 mg) with thiacalix[4]arenetetrasulfonate (20 micromol). Two-hundredfold preconcentration of the analyte elements was achieved by passing 100 mL of sample solution (pH 8.
View Article and Find Full Text PDFA highly sensitive and selective method for the determination of the Be(II) ion has been developed by the use of reversed-phase high-performance liquid chromatography (HPLC) with fluorometric detection using 2-(2'-hydroxyphenyl)-10-hydroxybenzo[h]quinoline (HPHBQ) as a precolumn (off-line) chelating reagent. The reagent HPHBQ has been designed to form the kinetically inert Be chelate compatible with high fluorescence yield, which is appropriate to the HPLC-fluorometric detection system. The Be-HPHBQ chelate is efficiently separated on a LiChrospher 100 RP-18(e) column with a methanol (58.
View Article and Find Full Text PDF