Publications by authors named "Hiroaki Kura"

L1-ordered FeNi alloy (tetrataenite), a promising candidate for rare-earth-free and low-cost permanent magnet applications, is attracting increasing attention from academic and industrial communities. Highly ordered single-phase L1-FeNi is difficult to synthesis efficiently because of its low chemical order-disorder transition temperature (200-320 °C). A non-equilibrium synthetic route utilizing a nitrogen topotactic reaction has been considered a valid approach, although the phase transformation mechanism is currently unknown.

View Article and Find Full Text PDF

Tetrataenite (L1-FeNi) is a promising candidate for use as a permanent magnet free of rare-earth elements because of its favorable properties. In this study, single-phase L1-FeNi powder with a high degree of order was synthesized through a new method, nitrogen insertion and topotactic extraction (NITE). In the method, FeNiN, which has the same ordered arrangement as L1-FeNi, is formed by nitriding A1-FeNi powder with ammonia gas.

View Article and Find Full Text PDF

The magnetic behavior of α-Fe/Au nanoparticle (NP) assemblies is studied over a very wide range of dipolar interactions among α-Fe NPs, by changing the volume density of the α-Fe NP. The assembly whose α-Fe NP density is lower than 0.1% exhibits typical superparamagnetic behavior.

View Article and Find Full Text PDF

Monodisperse wustite (core)/spinel (shell) nanocubes with controllable size from 9 to 22 nm were synthesized by the decomposition of iron oleate complex at high temperature. The composition of the nanocubes was confirmed by X-ray diffraction and magnetic analysis, meanwhile the distributions of wustite and spinel phases within the nanocubes were directly observed by high resolution transmission electron microscopy using the dark-field image technique. The core/shell structure is quite unique, in which spinel phase is distributed not only preferentially on the surface, but also in the interior, while almost all of the wustite phase is located in the core of the nanocubes.

View Article and Find Full Text PDF

A phase transformation induced by the reduction of as-synthesized gamma-maghemite (gamma-Fe(2)O(3)) nanoparticles was performed in solution by exploiting the reservoir of reduction gas (CO) generated from the incomplete combustion reaction of organic substances in the reactor. Results from X-ray diffraction, color indicator, and magnetic analysis using a SQUID strongly support this phase transformation. Based on this route, monodisperse magnetite (Fe(3)O(4)) nanoparticles were simply produced in the range from 260 to 300 degrees C.

View Article and Find Full Text PDF