The use of diagrams can be effective in solving mathematical word problems solving. However, students worldwide do not construct diagrams unprompted or have trouble using them. In the present study, the effects of problem-appropriate diagram use instruction were investigated with an adaptation of the multiple baseline design method.
View Article and Find Full Text PDFBackground And Aims: Biliary atresia is a severe inflammatory and fibrosing cholangiopathy of neonates of unknown etiology. The onset of cholestasis at birth implies a prenatal onset of liver dysfunction. Our aim was to investigate the mechanisms linked to abnormal cholangiocyte development.
View Article and Find Full Text PDFTimely controlled oxygen (O) delivery is crucial for the developing liver. However, the influence of O on intercellular communication during hepatogenesis is unclear. Using a human induced pluripotent stem cell-derived liver bud (hiPSC-LB) model, we found hypoxia induced with an O-permeable plate promoted hepatic differentiation accompanied by TGFB1 and TGFB3 suppression.
View Article and Find Full Text PDFOrganoid technology provides a revolutionary paradigm toward therapy but has yet to be applied in humans, mainly because of reproducibility and scalability challenges. Here, we overcome these limitations by evolving a scalable organ bud production platform entirely from human induced pluripotent stem cells (iPSC). By conducting massive "reverse" screen experiments, we identified three progenitor populations that can effectively generate liver buds in a highly reproducible manner: hepatic endoderm, endothelium, and septum mesenchyme.
View Article and Find Full Text PDFConventional two-dimensional differentiation from pluripotency fails to recapitulate cell interactions occurring during organogenesis. Three-dimensional organoids generate complex organ-like tissues; however, it is unclear how heterotypic interactions affect lineage identity. Here we use single-cell RNA sequencing to reconstruct hepatocyte-like lineage progression from pluripotency in two-dimensional culture.
View Article and Find Full Text PDFWe have developed a rapid and efficient genotyping method for detection of the mouse leptin obese mutation (Lep(ob)) using tetra-primer amplification refractory mutation system-polymerase chain reaction (tetra-primer ARMS-PCR). In this method, whole blood collected onto gamma-ray sterilized Flinders Technology Associates (FTA) filter paper is used as PCR template without a DNA purification step. Three genotypes (Lep(ob)/Lep(ob), Lep(ob)/+ and +/+) differentiated by single-tube PCR and electrophoresis were perfectly consistent with those determined by PCR-restriction fragment length polymorphism (PCR-RFLP).
View Article and Find Full Text PDFThe gene for mammalian O-sialoglycoprotein endopeptidase (Osgep) lies immediately adjacent to the gene for the APEX nuclease (Apex), a multifunctional DNA repair enzyme, in a head-to-head orientation. To clarify the regulation of these divergent genes, we studied their promoter regions with luciferase reporters. Deletion analysis of a fragment containing the entire mouse Apex gene suggested that cis-acting elements driving in the direction of Osgep are widely distributed in the mApex gene, in the antisense orientation.
View Article and Find Full Text PDFWe performed cDNA and genomic cloning, sequencing and promoter analysis of the putative human O-sialoglycoprotein endopeptidase gene OSGEP (a homologue of gcp, a Pasteurella haemolytica A1 glycoprotease). The cloned OSGEP cDNA is 1311 nucleotides long, and encodes a protein consisting of 335 amino acids with predicted molecular mass of 36.4 kDa.
View Article and Find Full Text PDF