Digital data are rising fast as Internet technology advances through many sources, such as smart phones, social networking sites, IoT, and other communication channels. Therefore, successfully storing, searching, and retrieving desired images from such large-scale databases are critical. Low-dimensional feature descriptors play an essential role in speeding up the retrieval process in such a large-scale dataset.
View Article and Find Full Text PDFTraditional healthcare services have changed into modern ones in which doctors can diagnose patients from a distance. All stakeholders, including patients, ward boy, life insurance agents, physicians, and others, have easy access to patients' medical records due to cloud computing. The cloud's services are very cost-effective and scalable, and provide various mobile access options for a patient's electronic health records (EHRs).
View Article and Find Full Text PDFCustomer churn prediction is one of the challenging problems and paramount concerns for telecommunication industries. With the increasing number of mobile operators, users can switch from one mobile operator to another if they are unsatisfied with the service. Marketing literature states that it costs 5-10 times more to acquire a new customer than retain an existing one.
View Article and Find Full Text PDFHuman emotions affect psychological health to a great level. Positive emotions relate to health improvement; whereas negative emotions may aggravate psychological disorders such as anxiety, stress, and depression. Although there exist several computational methods to predict psychological disorders, most of them provide a black-box view of uncertainty.
View Article and Find Full Text PDFIn the past decade, rapid development in digital communication has led to prevalent use of digital images. More importantly, confidentiality issues have also come up recently due to the increase in digital image transmission across the Internet. Therefore, it is necessary to provide high imperceptibility and security to digitally transmitted images.
View Article and Find Full Text PDFBackground: Accurate prediction of motor recovery after stroke is critical for treatment decisions and planning. Machine learning has been proposed to be a promising technique for outcome prediction because of its high accuracy and ability to process large volumes of data. It has been used to predict acute stroke recovery; however, whether machine learning would be effective for predicting rehabilitation outcomes in chronic stroke patients for common contemporary task-oriented interventions remains largely unexplored.
View Article and Find Full Text PDFCardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage.
View Article and Find Full Text PDFThe -coverage configuration that guarantees coverage of each location by at least sensors is highly popular and is extensively used to monitor diversified applications in wireless sensor networks. Long network lifetime and high detection quality are the essentials of such -covered sleep-scheduling algorithms. However, the existing sleep-scheduling algorithms either cause high cost or cannot preserve the detection quality effectively.
View Article and Find Full Text PDFUse of information and communication technology such as smart phone, smart watch, smart glass and portable health monitoring devices for healthcare services has made Mobile Health (mHealth) an emerging research area. Coronary Heart Disease (CHD) is considered as a leading cause of death world wide and an increasing number of people die prematurely due to CHD. Under such circumstances, there is a growing demand for a reliable cardiac monitoring system to catch the intermittent abnormalities and detect critical cardiac behaviors which lead to sudden death.
View Article and Find Full Text PDF
© LitMetric 2025. All rights reserved.