Publications by authors named "Hirayama B"

Introduction: The extent of surgical resection for tongue tumors is determined by tumor size, potentially affecting oral function and quality of life (QoL). However, the relationship between oral dysfunction and QoL decline due to glossectomy extent remains unexplored. Therefore, these correlations and their predictive value for postoperative QoL decline were elucidated.

View Article and Find Full Text PDF

Although Mohs paste can control bleeding, exudates, and odors from tumors, there have been no reports of the combination of Mohs paste with other treatments, such as chemotherapy, in oral cancer. Here, we report the combination of Mohs paste and chemotherapy for a case of metastatic oral cancer to the precordium skin and bilateral axillary lymph nodes. The tumors almost completely disappeared after the treatment.

View Article and Find Full Text PDF

Objectives: The mechanism of late implant failure is unclear. This study examined the association between sclerosing cancellous bone images and the risk of late implant failures using multi-detector row computed tomography (CT) imaging data.

Methods: We performed a case-control study.

View Article and Find Full Text PDF

Key Points: The goal was to determine the importance of the sodium-glucose cotransporter SGLT1 and the glucose uniporter GLUT2 in intestinal glucose absorption during oral glucose tolerance tests (OGTTs) in mice. Glucose absorption was determined in mice using positron emission tomography and three non-metabolizable glucose probes: one specific for SGLTs, one specific for GLUTs, and one a substrate for both SGLTs and GLUTs. Absorption was determined in wild-type, Sglt1 and Glut2 mice.

View Article and Find Full Text PDF

In the human sodium glucose cotransporter (hSGLT1) cycle, the protein undergoes conformational changes where the sugar-binding site alternatively faces the external and internal surfaces. Functional site-directed fluorometry was used to probe the conformational changes at the sugar-binding site. Residues (Y290, T287, H83, and N78) were mutated to cysteines.

View Article and Find Full Text PDF

The CryoSeal FS System has been recently introduced as an automated device for the production of complete fibrin glue from autologous plasma, rather than from pool allogenic or cattle blood, to prevent viral infection and allergic reaction. We evaluated the effectiveness of complete autologous fibrin glue and polyglycolic acid (PGA) sheet wound coverings in mucosa defect oral surgery. Postoperative pain, scar contracture, ingestion, tongue dyskinesia, and postoperative bleeding were evaluated in 12 patients who underwent oral (including the tongue) mucosa excision, and received a PGA sheet and an autologous fibrin glue covering.

View Article and Find Full Text PDF

Objective: We experimentally compared the effects of compressive and tractional mechanical stress on the temporomandibular joint (TMJ) of rabbits to assess the etiology of progressive condylar resorption.

Materials And Methods: We performed a cortical osteotomy using custom-made devices that were lengthened by 0.25 mm every 12 h for 1 week after surgery.

View Article and Find Full Text PDF

Kidneys contribute to glucose homeostasis by reabsorbing filtered glucose in the proximal tubules sodium-glucose cotransporters (SGLTs). Reabsorption is primarily handled by SGLT2, and SGLT2-specific inhibitors, including dapagliflozin, canagliflozin, and empagliflozin, increase glucose excretion and lower blood glucose levels. To resolve unanswered questions about these inhibitors, we developed a novel approach to map the distribution of functional SGLT2 proteins in rodents using positron emission tomography with 4-[F]fluoro-dapagliflozin (F-Dapa).

View Article and Find Full Text PDF

Unlabelled: This study aimed to improve bone regeneration using a timed-release system for periosteal expansion osteogenesis (TIME-PEO) using a shape memory alloy (SMA) mesh device and absorbable thread in a rabbit model.

Materials And Methods: Twelve rabbits were used in this study. The device was inserted under the periosteum at the forehead, then pushed, bent, and attached to the bone surface and fixed with an absorbable thread.

View Article and Find Full Text PDF

Key Points: Glucose transporters are central players in glucose homeostasis. There are two major classes of glucose transporters in the body, the passive facilitative glucose transporters (GLUTs) and the secondary active sodium-coupled glucose transporters (SGLTs). In the present study, we report the use of a non-invasive imaging technique, positron emission tomography, in mice aiming to evaluate the role of GLUTs and SGLTs in controlling glucose distribution and utilization.

View Article and Find Full Text PDF

Glucose is a major metabolic substrate required for cancer cell survival and growth. It is mainly imported into cells by facilitated glucose transporters (GLUTs). Here we demonstrate the importance of another glucose import system, the sodium-dependent glucose transporters (SGLTs), in pancreatic and prostate adenocarcinomas, and investigate their role in cancer cell survival.

View Article and Find Full Text PDF

Subjects: The purpose of this study was to evaluate the treatment modalities for neurosensory disturbances (NSDs) of the inferior alveolar nerve occurring after retromolar bone harvesting for bone augmentation procedures before implant placement.

Methods: One hundred four patients, of which 49 and 55 exhibited vertical or horizontal alveolar ridge defects in the mandible and maxilla, respectively, were enrolled. Nineteen patients underwent block bone grafting, 38 underwent guided bone generation or autogenous bone grafting combined with titanium mesh reconstruction, and 47 underwent sinus floor augmentation.

View Article and Find Full Text PDF

Background/aim: The aim of this study was to investigate the trends and characteristic features of mandibular condyle fractures in elderly patients in terms of etiology, patterns, and treatment modalities.

Patients And Methods: Records of 201 patients aged 65 years and older, who were treated for maxillofacial fractures at the Department of Oral and Maxillofacial Surgery, Kyushu Dental University, and Tohoku University from January 2002 to December 2013, were retrospectively analyzed. Patient records and radiographs were examined, with the following information: relevant medical history, cause of fracture, the presence and state of premolars and molars in the maxilla and mandible, number and location of mandible fracture, and method of treatment.

View Article and Find Full Text PDF

SGLT2 inhibitors are a new class of drugs that have been recently developed to treat type II diabetes. They lower glucose levels by inhibiting the renal Na(+)/glucose cotransporter SGLT2, thereby increasing the amount of glucose excreted in the urine. Pharmacodynamics studies have raised questions about how these inhibitors reach SGLT2 in the brush border membrane of the S1 and S2 segments of the renal proximal tubule: are these drugs filtered by the glomerulus and act extracellularly, or do they enter the cell and act intracellularly? To address this question we expressed hSGLT2 in HEK-293T cells and determined the affinity of a specific hSGLT2 inhibitor, TA-3404 (also known as JNJ-30980924), from the extra- and intracellular side of the plasma membrane.

View Article and Find Full Text PDF

Sodium glucose cotransporters (SGLTs) mediate the translocation of carbohydrates across the brush border membrane of different organs such as intestine, kidney, and brain. The human SGLT5 (hSGLT5), in particular, is localized in the kidney were it is responsible for mannose and fructose reabsorption from the glomerular filtrate as confirmed by more recent studies on hSGLT5 knockout mice. Here we characterize the functional properties of hSGLT5 expressed in a stable T-Rex-HEK-293 cell line using biochemical and electrophysiological assays.

View Article and Find Full Text PDF

Sodium cotransporters from several different gene families belong to the leucine transporter (LeuT) structural family. Although the identification of Na(+) in binding sites is beyond the resolution of the structures, two Na(+) binding sites (Na1 and Na2) have been proposed in LeuT. Na2 is conserved in the LeuT family but Na1 is not.

View Article and Find Full Text PDF

Na(+)-glucose cotransporter (SGLT) mRNAs have been detected in many organs of the body, but, apart from kidney and intestine, transporter expression, localization, and functional activity, as well as physiological significance, remain elusive. Using a SGLT-specific molecular imaging probe, α-methyl-4-deoxy-4-[(18)F]fluoro-D-glucopyranoside (Me-4-FDG) with ex vivo autoradiography and immunohistochemistry, we mapped in vivo the regional distribution of functional SGLTs in rat brain. Since Me-4-FDG is not a substrate for GLUT1 at the blood-brain barrier (BBB), in vivo delivery of the probe into the brain was achieved after opening of the BBB by an established procedure, osmotic shock.

View Article and Find Full Text PDF

In the LeuT family of sodium solute symporters, 13-17% of the residues in transmembrane domains are aromatic. The unique properties of aromatic amino acids allow them to play specialized roles in proteins, but their function in membrane transporters is underappreciated. Here we analyze the π bonding pattern in the LeuT (5TMIR) family and then describe the role of a triad of aromatic residues in sodium-dependent sugar cotransporters (SGLTs).

View Article and Find Full Text PDF

The Na(+)-glucose cotransporter hSGLT1 is a member of a class of membrane proteins that harness Na(+) electrochemical gradients to drive uphill solute transport. Although hSGLT1 belongs to one gene family (SLC5), recent structural studies of bacterial Na(+) cotransporters have shown that Na(+) transporters in different gene families have the same structural fold. We have constructed homology models of hSGLT1 in two conformations, the inward-facing occluded (based on vSGLT) and the outward open conformations (based on Mhp1), mutated in turn each of the conserved gates and ligand binding residues, expressed the SGLT1 mutants in Xenopus oocytes, and determined the functional consequences using biophysical and biochemical assays.

View Article and Find Full Text PDF

Human Na(+)-D-glucose cotransporter (hSGLT) inhibitors constitute the newest class of diabetes drugs, blocking up to 50% of renal glucose reabsorption in vivo. These drugs have potential for widespread use in the diabetes epidemic, but how they work at a molecular level is poorly understood. Here, we use electrophysiological methods to assess how they block Na(+)-D-glucose cotransporter SGLT1 and SGLT2 expressed in human embryonic kidney 293T (HEK-293T) cells and compared them to the classic SGLT inhibitor phlorizin.

View Article and Find Full Text PDF

There are two classes of glucose transporters involved in glucose homeostasis in the body, the facilitated transporters or uniporters (GLUTs) and the active transporters or symporters (SGLTs). The energy for active glucose transport is provided by the sodium gradient across the cell membrane, the Na(+) glucose cotransport hypothesis first proposed in 1960 by Crane. Since the cloning of SGLT1 in 1987, there have been advances in the genetics, molecular biology, biochemistry, biophysics, and structure of SGLTs.

View Article and Find Full Text PDF

The human Na(+)/D-glucose cotransporter 2 (hSGLT2) is believed to be responsible for the bulk of glucose reabsorption in the kidney proximal convoluted tubule. Since blocking reabsorption increases urinary glucose excretion, hSGLT2 has become a novel drug target for Type 2 diabetes treatment. Glucose transport by hSGLT2 was studied at 37°C in human embryonic kidney 293T cells using whole cell patch-clamp electrophysiology.

View Article and Find Full Text PDF

This work provides evidence of previously unrecognized uptake of glucose via sodium-coupled glucose transporters (SGLTs) in specific regions of the brain. The current understanding of functional glucose utilization in brain is largely based on studies using positron emission tomography (PET) with the glucose tracer 2-deoxy-2-[F-18]fluoro-D-glucose (2-FDG). However, 2-FDG is only a good substrate for facilitated-glucose transporters (GLUTs), not for SGLTs.

View Article and Find Full Text PDF

Membrane transporters that use energy stored in sodium gradients to drive nutrients into cells constitute a major class of proteins. We report the crystal structure of a member of the solute sodium symporters (SSS), the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT). The approximately 3.

View Article and Find Full Text PDF

Drugs are transported by cotransporters with widely different turnover rates. We have examined the underlying mechanism using, as a model system, glucose and indican (indoxyl-beta-D-glucopyranoside) transport by human Na+/glucose cotransporter (hSGLT1). Indican is transported by hSGLT1 at 10% of the rate for glucose but with a fivefold higher apparent affinity.

View Article and Find Full Text PDF