Publications by authors named "Hirase H"

Neurons in the cerebral cortex and hippocampus discharge synchronously in brain state-dependent manner to transfer information. Published studies have highlighted the temporal coordination of neuronal activities between the hippocampus and a neocortical area, however, how the spatial extent of neocortical activity relates to hippocampal activity remains partially unknown. We imaged mesoscopic neocortical activity while recording hippocampal local field potentials in anesthetized and unanesthetized GCaMP-expressing transgenic mice.

View Article and Find Full Text PDF

Purpose: Evaluating sacral fractures is crucial in fragility fractures of the pelvis. Dual-energy CT (DECT) is considered useful for diagnosing unclear fractures on single-energy CT (SECT). This study aims to investigate the effectiveness of DECT in diagnosing sacral fractures.

View Article and Find Full Text PDF

As the brain transitions from wakefulness to sleep, processing of external information diminishes while restorative processes, such as glymphatic removal of waste products, are activated. Yet, it is not known what drives brain clearance during sleep. We here employed an array of technologies and identified tightly synchronized oscillations in norepinephrine, cerebral blood volume, and cerebrospinal fluid (CSF) as the strongest predictors of glymphatic clearance during NREM sleep.

View Article and Find Full Text PDF

The efficacy and safety of percutaneous coronary intervention (PCI) for coronary artery disease has been established, and approximately 250,000 PCI procedures are performed annually in Japan. However, various complications including life-threatening complications can occur during PCI. Although several bailout procedures have been proposed to address complications during PCI, it is critically important for operators to manage each complication in real catheter rooms with confidence even in emergent situations.

View Article and Find Full Text PDF

The brain's ability to rapidly transition between sleep, quiet wakefulness, and states of high vigilance is remarkable. Cerebral norepinephrine (NE) plays a key role in promoting wakefulness, but how does the brain avoid neuronal hyperexcitability upon arousal? Here, we show that NE exposure results in the generation of free fatty acids (FFAs) within the plasma membrane from both astrocytes and neurons. In turn, FFAs dampen excitability by differentially modulating the activity of astrocytic and neuronal Na, K, ATPase.

View Article and Find Full Text PDF

Bioluminescence imaging (BLI) relies on the biochemical reaction between substrate and enzyme that triggers light emission upon convergence. Here, we present a protocol to study molecular oxygen dynamics in the in vivo mouse brain using the oxygen-dependent reaction between luciferase and its substrate. We describe steps for acute craniotomy, viral transfection, substrate administration, imaging, and analysis of hypoxic pockets.

View Article and Find Full Text PDF

As the sizes of noble metal catalysts, such as platinum, have been successfully minimized, fundamental insights into the electronic properties of metal sub-nanoclusters are increasingly sought for optimizing their catalytic performance. However, it is difficult to rationalize the catalytic activities of metal sub-nanoclusters owing to their more complex electronic structure compared with those of small molecules and bulky solids. In this study, the adsorption of molecular oxygen on a Pt sub-nanocluster supported on a graphene layer was analyzed using density functional theory.

View Article and Find Full Text PDF

Consciousness is lost within seconds upon cessation of cerebral blood flow. The brain cannot store oxygen, and interruption of oxidative phosphorylation is fatal within minutes. Yet only rudimentary knowledge exists regarding cortical partial oxygen tension (o) dynamics under physiological conditions.

View Article and Find Full Text PDF

Purpose: In an aging society, fragility fractures of the pelvis (FFP) have increased significantly. However, there is no clear consensus on the timing and criteria for transitioning from conservative treatment to surgery for these fractures. Thus, we aimed to investigate the effects of our treatment protocol for FFP based on conservative treatment.

View Article and Find Full Text PDF

The potential role of astrocytes in lateral habenula (LHb) in modulating anxiety was explored in this study. The habenula are a pair of small nuclei located above the thalamus, known for their involvement in punishment avoidance and anxiety. Herein, we observed an increase in theta-band oscillations of local field potentials (LFPs) in the LHb when mice were exposed to anxiety-inducing environments.

View Article and Find Full Text PDF

Maternal nutrient intake influences the health of the offspring via microenvironmental systems in digestion and absorption. Maternal high fructose diet (HFD) impairs hippocampus-dependent memory in adult female rat offspring. However, the underlying mechanisms remain largely unclear.

View Article and Find Full Text PDF

Cerebral oedema is associated with morbidity and mortality after traumatic brain injury (TBI). Noradrenaline levels are increased after TBI, and the amplitude of the increase in noradrenaline predicts both the extent of injury and the likelihood of mortality. Glymphatic impairment is both a feature of and a contributor to brain injury, but its relationship with the injury-associated surge in noradrenaline is unclear.

View Article and Find Full Text PDF

L-Lactate is increasingly appreciated as a key metabolite and signaling molecule in mammals. However, investigations of the inter- and intra-cellular dynamics of L-lactate are currently hampered by the limited selection and performance of L-lactate-specific genetically encoded biosensors. Here we now report a spectrally and functionally orthogonal pair of high-performance genetically encoded biosensors: a green fluorescent extracellular L-lactate biosensor, designated eLACCO2.

View Article and Find Full Text PDF

Extracellular potassium concentration ([K]) is known to increase as a function of arousal. [K] is also a potent modulator of transmitter release. Yet, it is not known whether [K] is involved in the neuromodulator release associated with behavioral transitions.

View Article and Find Full Text PDF

Activation of Gq-type G protein-coupled receptors (GPCRs) gives rise to large cytosolic Ca elevations in astrocytes. Previous in vitro and in vivo studies have indicated that astrocytic Ca elevations are closely associated with diameter changes in the nearby blood vessels, which astrocytes enwrap with their endfeet. However, the causal relationship between astrocytic Ca elevations and blood vessel diameter changes has been questioned, as mice with diminished astrocytic Ca signaling show normal sensory hyperemia.

View Article and Find Full Text PDF

Albumin, a protein produced by liver hepatocytes, represents the most abundant protein in blood plasma. We have previously engineered a liver-targeting adeno-associated viral vector (AAV) that expresses fluorescent protein-tagged albumin to visualize blood plasma in mice. While this approach is versatile for imaging in adult mice, transgene expression vanishes when AAV is administered in neonates due to dilution of the episomal AAV genome in the rapidly growing liver.

View Article and Find Full Text PDF

Information transfer within neuronal circuits depends on the balance and recurrent activity of excitatory and inhibitory neurotransmission. Chloride (Cl) is the major central nervous system (CNS) anion mediating inhibitory neurotransmission. Astrocytes are key homoeostatic glial cells populating the CNS, although the role of these cells in regulating excitatory-inhibitory balance remains unexplored.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes are the most common type of glial cells in the brain and have unique roles tied to their various subpopulations, particularly in relation to brain health and disease.
  • A specific glycosylation of the PTPRZ protein, crucial for astrocyte function, is prevalent in reactive astrocytes during demyelination, but its role across different diseases has not been fully explored.
  • Research shows that glycosylated PTPRZ is found in damaged brain areas of multiple sclerosis patients and in certain mouse models of demyelination, indicating that this modification is significant for the behavior and characteristics of astrocytes in disease contexts.
View Article and Find Full Text PDF

We recently found that [Pt(CO)(PPh)] (Pt = platinum; CO = carbon monoxide; PPh = triphenylphosphine; = 1+ or 2+) is a Pt nanocluster (Pt NC) that can be synthesized with atomic precision in air. The present study demonstrates that it is possible to prepare a Pt-supported carbon black (CB) catalyst (Pt/CB) with 2.1 times higher oxygen reduction reaction (ORR) activity than commercial Pt nanoparticles/CB by the adsorption of [Pt(CO)(PPh)] onto CB and subsequent calcination of the catalyst.

View Article and Find Full Text PDF

Genetic testing for inherited arrhythmias and discriminating pathogenic or benign variants from variants of unknown significance (VUS) is essential for gene-based medicine. KCNQ1 is a causative gene of type 1 long QT syndrome (LQTS), and approximately 30% of the variants found in type 1 LQTS are classified as VUS. We studied the role of zebrafish cardiac arrhythmia model in determining the clinical significance of KCNQ1 variants.

View Article and Find Full Text PDF

Studying blood microcirculation is vital for gaining insights into vascular diseases. Blood flow imaging in deep tissue is currently achieved by acute administration of fluorescent dyes in the blood plasma. This is an invasive process, and the plasma fluorescence decreases within an hour of administration.

View Article and Find Full Text PDF
Article Synopsis
  • Potassium ions (K+) are vital electrolytes in biological systems and understanding their role can enhance our knowledge of various processes.
  • Researchers reported the crystal structure of a K+ biosensor, GINKO1, and developed an enhanced version called GINKO2 through structure-guided optimization.
  • GINKO2 has improved sensitivity and specificity, enabling effective in vivo detection and imaging of K+ dynamics in different organisms like bacteria, plants, and mice.
View Article and Find Full Text PDF

Sleep has a complex micro-architecture, encompassing micro-arousals, sleep spindles and transitions between sleep stages. Fragmented sleep impairs memory consolidation, whereas spindle-rich and delta-rich non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep promote it. However, the relationship between micro-arousals and memory-promoting aspects of sleep remains unclear.

View Article and Find Full Text PDF