ACS Appl Mater Interfaces
September 2024
Herein, we report halide nanocomposite solid electrolytes (HNSEs) that integrate diverse oxides with alterations that allow tuning of their ionic conductivity, (electro)chemical stability, and specific density. A two-step mechanochemical process enabled the synthesis of multimetal (or nonmetal) HNSEs, MO-2LiZrCl, as verified by pair distribution function and X-ray diffraction analyses. The multimetal (or nonmetal) HNSE strategy increases the ionic conductivity of LiZrCl from 0.
View Article and Find Full Text PDFDesigning highly conductive and (electro)chemical stable inorganic solid electrolytes using cost-effective materials is crucial for developing all-solid-state batteries. Here, we report halide nanocomposite solid electrolytes (HNSEs) ZrO(-ACl)-AZrCl (A = Li or Na) that demonstrate improved ionic conductivities at 30 °C, from 0.40 to 1.
View Article and Find Full Text PDFOwing to their high Li conductivities, mechanical sinterability, and solution processability, sulfide Li argyrodites have attracted much attention as enablers in the development of high-performance all-solid-state batteries with practicability. However, solution-processable Li argyrodites have been developed only for a composition of LiPSX (X = Cl, Br, I) with insufficiently high Li conductivities (∼10 S cm). Herein, we report the highest Li conductivity of 0.
View Article and Find Full Text PDF