Publications by authors named "Hirale S Jeevan"

The nature of the pairing symmetry of the first heavy fermion superconductor CeCuSi has recently become the subject of controversy. While CeCuSi was generally believed to be a d-wave superconductor, recent low-temperature specific heat measurements showed evidence for fully gapped superconductivity, contrary to the nodal behavior inferred from earlier results. Here, we report London penetration depth measurements, which also reveal fully gapped behavior at very low temperatures.

View Article and Find Full Text PDF

In exotic superconductors, including high- copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCuSi, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero.

View Article and Find Full Text PDF

Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage.

View Article and Find Full Text PDF

We report on the magnetic excitation spectrum in the normal state of the heavy-fermion superconductor CeCu92)Si(2) on approaching the quantum critical point (QCP). The magnetic response in the superconducting state is characterized by a transfer of spectral weight to energies above a spin excitation gap. In the normal state, a slowing-down of the quasielastic magnetic response is observed, which conforms to the scaling expected for a QCP of spin-density-wave type.

View Article and Find Full Text PDF