Anticancer Agents Med Chem
February 2014
Tumor cells, including leukemic cells, remodel their bioenergetic system in favor of aerobic glycolysis. This process is called "the Warburg effect" and offers an attractive pharmacological target to preferentially eliminate malignant cells. In addition, recent results show that metabolic changes can be linked to tumor immune evasion.
View Article and Find Full Text PDFAbstract Cyclin A2 belongs to the core cell cycle regulators and participates in the control of both S phase and mitosis. However, several observations suggest that it is also endowed with other functions, and our recent data shed light on its involvement in cytoskeleton dynamic and cell motility. From the transcription of its gene to its posttranslational modifications, cyclin A2 regulation reveals the complexity of the regulatory network shaping cell cycle progression.
View Article and Find Full Text PDFVav1 is expressed exclusively in hematopoietic cells and is required for T cell development and activation. Vav1-deficient mice show thymic hypocellularity due to a partial block during thymocyte development at the DN3 stage and between the double positive (DP) and single positive (SP) transition. Vav1 has been shown to play a significant role in several non-hematopoietic tumors but its role in leukemogenesis is unknown.
View Article and Find Full Text PDFThe ETS (E26) protein Elk-1 serves as a paradigm for mitogen-responsive transcription factors. It is multiply phosphorylated by mitogen-activated protein kinases (MAPKs), which it recruits into pre-initiation complexes on target gene promoters. However, events preparatory to Elk-1 phosphorylation are less well understood.
View Article and Find Full Text PDFMost cancer cells use anaerobic-like glycolysis to generate energy instead of oxidative phosphorylation. They also avoid recognition by CTLs, which occurs primarily through decreasing the level of MHC class I (MHC-I) at the cell surface. We find that the two phenomena are linked; culture conditions that force respiration in leukemia cells upregulate MHC-I transcription and protein levels at the cell surface, whereas these decrease in cells forced to perform fermentation as well as in leukemia cells lacking a functional mitochondrial respiratory chain.
View Article and Find Full Text PDFDegradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and release of basic fibroblast growth factor (bFGF) are principal aspects of the pathology of osteoarthritis (OA). ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes.
View Article and Find Full Text PDFTumor cell-based vaccines are currently used in clinical trails, but they are in general poorly immunogenic because they are composed of cell extracts or apoptotic cells. Live tumor cells should be much better Ags provided that they are properly processed by the host immune system. We show herein that stable expression of a small hairpin RNA for ERK5 (shERK5) decreases ERK5 levels in human and mouse leukemic cells and leads to their elimination by NK cells in vivo.
View Article and Find Full Text PDFThe contractile activity of striated muscle depends on myofibrils that are highly ordered macromolecular complexes. The protein components of myofibrils are well characterized, but it remains largely unclear how signaling at the molecular level within the sarcomere and the control of assembly are coordinated. We show that the Rho GTPase TC10 appears during differentiation of human primary skeletal myoblasts and it is active in differentiated myotubes.
View Article and Find Full Text PDFReepithelialization during cutaneous wound healing involves numerous signals that result in basal keratinocyte activation, spreading, and migration, all linked to a loosening of cell-cell adhesion structures. The transcription factor Slug is required for this process, and EGF treatment of human keratinocytes induced activating phosphorylation of Erk5 that coincides with slug transcription. Accordingly, ectopic activation of Erk5 led to increased Slug mRNA levels and faster wound healing, whereas keratinocyte migration was totally blocked by Erk5 pathway inhibition.
View Article and Find Full Text PDFThe cancer immunosurveillance hypothesis has found strong experimental support in recent years. It is believed that cytotoxic lymphocytes are important effectors in this process. PKCtheta plays an essential role in proliferation, activation and survival of these cells, but also proliferation and survival of leukemic T cells.
View Article and Find Full Text PDFThe AP-1 family member JunB is a critical regulator of T cell function. JunB is a transcriptional activator of various cytokine genes, such as IL-2, IL-4, and IL-10; however, the post-translational modifications that regulate JunB activity in T cells are poorly characterized. We show here that JunB is conjugated with small ubiquitin-like modifier (SUMO) on lysine 237 in resting and activated primary T cells and T cell lines.
View Article and Find Full Text PDFFra-1, a transcription factor that is phylogenetically and functionally related to the proto-oncoprotein c-Fos, controls many essential cell functions. It is expressed in many cell types, albeit with differing kinetics and abundances. In cells reentering the cell cycle, Fra-1 expression is transiently stimulated albeit later than that of c-Fos and for a longer time.
View Article and Find Full Text PDFMAPK cascades play a central role in the cellular response to the environment. The pathway involving the MAPK ERK5 mediates growth factor- and stress-induced intracellular signaling that controls proliferation or survival depending upon the cell context. In this study, we show that reducing ERK5 levels with a specific small hairpin RNA 5 (shERK5) reduced cell viability, sensitized cells to death receptor-induced apoptosis, and blocked the palliative effects of phorbol ester in anti-Fas Ab-treated cells.
View Article and Find Full Text PDFBackground Information: Members of the Rho GTPase family mediate changes in the actin cytoskeleton and are also implicated in developmental processes, including myogenesis. Nevertheless, a comprehensive analysis of these proteins during myofibrillogenesis has never been performed in any organism.
Results: Using the ascidian model to identify the role of Rho GTPases on myofibrillogenesis, we show that transcripts for all Rho GTPases are detected in muscle cells of the embryo.
Transforming growth factor beta (TGF-beta) is a pluripotent cytokine that regulates cell growth and differentiation in a cell type-dependent fashion. TGF-beta exerts its effects through the activation of several signaling pathways. One involves membrane proximal events that lead to nuclear translocation of members of the Smad family of transcriptional regulators.
View Article and Find Full Text PDFThe mitogen-activated protein kinase (MAPK) ERK5 plays an important role in mammary epithelial proliferation, endothelial cell survival and normal embryonic development. In nonhaematopoietic cells, mitogenic and stress signals activate the ERK5 cascade. Here, we investigated the role of the ERK5 pathway in T-cell activation and show that primary and leukaemic T cells express ERK5, whose activating phosphorylation is induced by antibodies against CD3 but not by phorbol myristate acetate treatment.
View Article and Find Full Text PDFThe inducible transcriptional complex AP-1, composed of c-Fos and c-Jun proteins, is crucial for cell adaptation to many environmental changes. While its mechanisms of activation have been extensively studied, how its activity is restrained is poorly understood. We report here that lysine 265 of c-Fos is conjugated by the peptidic posttranslational modifiers SUMO-1, SUMO-2, and SUMO-3 and that c-Jun can be sumoylated on lysine 257 as well as on the previously described lysine 229.
View Article and Find Full Text PDFPKCtheta plays an essential role in activation of mature T cells. Here, we report that the TCR/CD28-induced tyrosine phosphorylation and activation of PLCgamma1 was significantly impaired in PKCtheta (-/-) primary, restimulated T cells. Consistent with this finding, receptor-induced Ca(2+) mobilization, NF-AT DNA-binding activity and the membrane translocation of PKCalpha, a PLCgamma1-dependent conventional PKC, were also markedly reduced in the same cells.
View Article and Find Full Text PDFThe transcription factor Elk-1 is a nuclear target of mitogen-activated protein kinases and regulates immediate early gene activation by extracellular signals. We show that Elk-1 is also conjugated to SUMO on either lysines 230, 249, or 254. Mutation of all three sites is necessary to fully block SUMOylation in vitro and in vivo.
View Article and Find Full Text PDFVav1, the 95-kDa protein encoded by the vav1 proto-oncogene, is expressed exclusively in haematopoietic cells, where it becomes phosphorylated on tyrosine residues in response to antigen receptor ligation. Vav1 was found to act as a Rac1-specific guanine nucleotide exchange factor and to activate c-Jun N-terminal kinase (JNK1) in vitro and in ectopic expression systems using non-haematopoietic cells. Here, we studied the role of Vav1 in JNK1 activation in T cells versus non-haematopoietic cells.
View Article and Find Full Text PDFCrit Rev Eukaryot Gene Expr
July 2004
The P2X7 receptor is a member of the family of P2X purinergic receptors, which upon sustained activation forms large pores in the plasma membrane. In cells of hematopoietic origin, P2X7 receptor activation has been shown to lead to multiple downstream events, including cytokine release, cell permeabilization, and apoptosis. This receptor has also been implicated in the generation of multinucleated giant cells, polykaryons, and osteoclasts.
View Article and Find Full Text PDFThe concept that adenosine triphosphate (ATP) can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission (Edwards et al., 1992), inflammation (Perregaux et al., 1994), apoptosis (Chow et al.
View Article and Find Full Text PDFTranscriptional activation of the cyclin D1 gene is a key step in cell proliferation. Accordingly, cyclin D1 overexpression is frequently an early step in neoplastic transformation, particularly in mammary epithelium. Numerous studies have linked elevated cyclin D1 promoter activity to a sustained activation of the ERK1/2 cascade.
View Article and Find Full Text PDFCellular stress activates multiple mitogen-activated protein kinase (MAPK) cascades and immediate-early gene (IEG) transcription. To address how these events are linked, we investigated the endogenous signaling/transcription factor network driving IEG activation by arsenite and anisomycin in the human osteosarcoma cell line HOS/TE-85. Induction of IEG transcription by both stresses corresponded temporally with the phosphorylation of the regulatory factors Elk-1 and cAMP response element-binding protein (CREB), along with activation of the extracellular signal-regulated kinase (ERK), stress-activated protein kinase (SAPK) and p38 MAPK cascades.
View Article and Find Full Text PDF