Publications by authors named "Hipps K"

Aquaporin-4 (AQP4) is a water channel protein found primarily in the central nervous system (CNS) that helps to regulate water-ion homeostasis. AQP4 exists in two major isoforms: M1 and M23. While both isoforms have a homotetrameric quaternary structure and are functionally identical when transporting water, the M23 isoform forms large protein aggregates known as orthogonal arrays of particles (OAPs).

View Article and Find Full Text PDF

Monolayers self-assembled by triphenyleneethynylene (TPE) compounds bearing two terminal alkynyl chains were polymerized by Glaser-Hay (G-H) alkyne coupling at the acetonitrile-HOPG interface. The alkynyl chains extend into the solution due to the monolayer's dense-packed morphology. Reacting substructures that have no morphology-determining roles is a potential strategy for preserving monolayer morphology throughout polymerization.

View Article and Find Full Text PDF

Kinetic analysis of surface reactions at the single molecule level is important for understanding the influence of the substrate and solvent on reaction dynamics and mechanisms, but it is difficult with current methods. Here we present a stochastic kinetic analysis of the oxygenation of cobalt octaethylporphyrin (CoOEP) at the solution/solid interface by monitoring fluctuations from equilibrium using scanning tunneling microscopy (STM) imaging. Image movies were used to monitor the oxygenated and deoxygenated state dwell times.

View Article and Find Full Text PDF

We present a quantitative study comparing the binding of 4-methoxypyridine, MeOPy, ligand to Co(ii)octaethylporphyrin, CoOEP, at the phenyloctane/HOPG interface and in toluene solution. Scanning tunneling microscopy (STM) was used to study the ligand binding to the porphyrin receptors adsorbed on graphite. Electronic spectroscopy was employed for examining this process in fluid solution.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) fall generally into two broad categories: those that are covalently bound either to the surface or to each other and those that rely on weaker forces such as hydrogen bonding or van der Waals forces. The engineering of the structure of SAMs formed from weaker forces is an exciting and complex field that often utilizes long alkane substituents bound to core moieties. The core provides the unique optical, electronic, or catalytic property desired, while the interdigitation of the alkane chains provides the means for creating well-regulated patterns of cores on the substrate.

View Article and Find Full Text PDF

One of the common practices in the literature of molecular desorption is the comparison of theoretically (mostly using DFT) calculated single molecule adsorption energies with experimental desorption energies from studies like temperature programmed desorption (TPD) etc. Comparisons like those do not consider that the experimental desorption energies are obtained via ensemble techniques while theoretical values are calculated at the single molecule level. Theoretical values are generally based upon desorption of a single molecule from a clean surface, or upon desorption of an entire monolayer.

View Article and Find Full Text PDF

This study explores directed noncovalent bonding in the self-assembly of nonplanar aromatic carboxylic acids on gold and graphite surfaces. It is the first step in developing a new design strategy to create two-dimensional surface metal-organic frameworks (SURFMOFs). The acid molecules used are tetraphenylethene-based and are typically employed in the synthesis of three-dimensional (3D) MOF crystalline solids.

View Article and Find Full Text PDF

Porphyrins and phthalocyanines are ubiquitous in modern science and technology. Their stability, redox properties, and photoresponse make them candidates for numerous applications. Many of these applications rely on thin films, and these are critically dependent on the first monolayer.

View Article and Find Full Text PDF

Scanning tunneling microscopy (STM) is used to study for the first time the reversible binding of imidazole (Im) and nickel(ii) octaethylporphyrin (NiOEP) supported on highly oriented pyrolytic graphite (HOPG) at the phenyloctane/NiOEP/HOPG interface at 25 °C. The ligation of Im to the NiOEP receptor while not observed in fluid solution is readily realized at the solution/HOPG interface. The coordination process scales with increasing Im concentration and can be effectively modeled by the Langmuir isotherm.

View Article and Find Full Text PDF

A focused review is presented on the evolution of our understanding of the kinetic and thermodynamic factors that play a critical role in the formation of well ordered organic adlayers at the solution-solid interface. While the current state of knowledge is in the very early stages, it is now clear that assumptions of kinetic or thermodynamic control are dangerous and require careful confirmation. Equilibrium processes at the solution-solid interface are being described by evolving thermodynamic models that utilize concepts from the thermodynamics of micelles.

View Article and Find Full Text PDF

Self-assembled crystalline nanostructures with sheaf-like morphology fabricated from tetra(4-aminophenyl)porphyrin and tetra(4-sulfonatophenyl)porphyrin are reported for the first time. The hierarchical sheaf-like growth of the assemblies exhibits Arrhenius behaviour. The observed morphology results from crystal splitting during initial oriented attachment growth followed by Ostwald ripening.

View Article and Find Full Text PDF

We present a new solution-solid (SS) interface scanning tunneling microscope design that enables imaging at high temperatures with low thermal drift and with volatile solvents. In this new design, distinct from the conventional designs, the entire microscope is surrounded in a controlled-temperature and controlled-atmosphere chamber. This allows users to take measurements at high temperatures while minimizing thermal drift.

View Article and Find Full Text PDF

A density functional theory study of a cobalt(II) octaethylporphyrin (CoOEP) monolayer on Au(111) and HOPG(0001) surfaces was performed under periodic boundary conditions. Calculations with and without dispersion corrections are performed and the effect of van der Waals forces on the interface properties is analyzed. Calculations have determined that the CoOEP molecule tends to bind at the 3-fold and the 6-fold center sites on Au(111) and HOPG(0001), respectively.

View Article and Find Full Text PDF

Scanning tunneling microscopy was used to make the first molecular scale measurements of the temperature dependence of composition of an adlayer at the solution-solid interface. We conclusively demonstrate that metal porphyrins adsorb very strongly on Au(111) at the solution solid interface such that the monolayer composition is entirely kinetically controlled below about 100 °C. The barrier for desorption is so great in fact that a temperature of 135 °C is required to induce desorption over a period of hours.

View Article and Find Full Text PDF

Mechanical and structural properties of ionically self-assembled nanostructures of meso-tetra(4-sulfonatophenyl)porphyrin (TSPP) and meso-tetra(4-pyridyl)porphyrin (TPyP) are presented. This is the first time that elastic modulus of an ionic porphyrin nanostructure has been reported. X-ray photoelectron spectroscopy (XPS), UV-visible spectra, and elemental analysis all support a stoichiometric 1 : 1 TSPP to TPyP composition.

View Article and Find Full Text PDF

For the first time, the pressure and temperature dependence of a chemical reaction at the solid/solution interface is studied by scanning tunneling microscopy (STM), and thermodynamic data are derived. In particular, the STM is used to study the reversible binding of O(2) with cobalt(II) octaethylporphyrin (CoOEP) supported on highly oriented pyrolytic graphite (HOPG) at the phenyloctane/CoOEP/HOPG interface. The adsorption is shown to follow the Langmuir isotherm with P(1/2)(298K) = 3200 Torr.

View Article and Find Full Text PDF

Graphene prepared on Cu foil by chemical vapor deposition was studied as a function of post growth cooling conditions. CuO islands embedded in the graphene film were discovered and studied by scanning electron microscopy, atomic force microscopy, and X-ray photoemission spectroscopy. It is shown that nanostructured holes can be formed within a graphene film by reduction using hydrogen cooling immediately after film growth.

View Article and Find Full Text PDF

Basic concepts in tunneling spectroscopy applied to molecular systems are presented. Junctions of the form M-A-M, M-I-A-M, and M-I-A-I'-M, where A is an active molecular layer, are considered. Inelastic electron tunneling spectroscopy (IETS) is found to be readily applied to all the above device types.

View Article and Find Full Text PDF

Adsorption on graphite (HOPG) by titanium phthalocyanine axially bonded to a catechol ligand (TiPcat), titanylphthalocyanine (TiOPc), and 1:1 mixtures of these are studied at the HOPG-octylbenzene interface. The surface structures of a two-component bilayer, and of the individual monolayers of TiOPc and TiPcat, were determined by scanning tunneling microscopy (STM). TiPcat self-segregates onto a monolayer of TiOPc when an equal molar mixture is used.

View Article and Find Full Text PDF

In this communication we provide the first UHV-STM images and STM-based current-voltage (I-V) and orbital mediated tunneling spectroscopy (OMTS) data on a self-assembled porphyrin nanostructure at the single structure level. We will show that transverse conductivity over distances less than 10 nm can occur by barrier type tunneling but that long distance conduction solely occurs through the LUMO band. These nanorods are very highly rectifying.

View Article and Find Full Text PDF

Self-assembled monolayer (SAM) films have been formed on oxidized copper (Cu) substrates by reaction with 1H,1H,2H,2H-perfluorodecylphosphonic acid (PFDP), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), and octylphosphonic acid (OP) and then investigated by X-ray photoelectron spectroscopy (XPS), contact angle measurement (CAM), and atomic force microscopy (AFM). The presence of alkyl phosphonate molecules, PFDP, ODP, DP, and OP, on Cu were confirmed by CAM and XPS analysis. No alkyl phosphonate molecules were seen by XPS on unmodified Cu as a control.

View Article and Find Full Text PDF

The adsorption of nickel(II) octaethylporphyrin (NiOEP) from benzene and chloroform solutions on highly ordered pyrolytic graphite (HOPG) was investigated with a scanning tunneling microscope (STM) operated in ambient conditions. STM images show that NiOEP self-assembles on the graphite surface and that the molecules lie flat and form 2D lattices with spacings of 1.58 +/- 0.

View Article and Find Full Text PDF

Binary thin films of cobalt(II) phthalocyanine (CoPc) and cobalt(II) tetraphenylporphyrin (CoTPP) were prepared at submonolayer coverage on Au(111)/mica substrates byvapor deposition. All sample preparation and analysis were done under an ultrahigh vacuum. Scanning tunneling microscopy (STM) constant-current images of CoPc/CoTPP mixtures showed two close-packed surface structures, with different compositional percentages and some disorder.

View Article and Find Full Text PDF

Scanning tunneling microscopy (STM) is utilized to study the solution-solid interface formed between Au(111) and solutions of coronene in hexanoic, heptanoic, and octanoic acids. In all three cases adsorbed coronene is observed and lays flat on the metal surface. Heptanoic and hexanoic acid solutions produce a hexagonal symmetry monolayer.

View Article and Find Full Text PDF

Bilayer and trilayer organic films grown on Au(111) were studied by scanning tunneling microscopy (STM). Studies were carried out under UHV conditions with the sample cooled to either 80 or 100K. Cobalt(II)phthalocyanine [CoPc] was deposited from vapor onto Au(111), followed by vanadyl phthalocyanine, VOPc.

View Article and Find Full Text PDF