Publications by authors named "Hipolito Medrano"

Selecting genotypes with a better capacity to respond and adapt to soil water deficits is essential to achieve the sustainability of grapevine cultivation in the context of increasing water scarcity. However, cultivar changes are very poorly accepted, and therefore it is particularly interesting to explore the intracultivar genetic diversity in water use efficiency (WUE). In previous studies, the cultivar "Grenache" has shown up to 30% variability in WUE.

View Article and Find Full Text PDF

The selection of genotypes best adapted to environmental conditions has traditionally focused on agronomic and grape composition parameters. However, to classify the genotypes most adapted to climate change conditions, the aim must be to focus on the ecophysiological responses that will ultimately determine their performance. The variability in water use efficiency of 13 Grenache genotypes over three-seasons was assessed under field conditions at leaf, grape and plant level.

View Article and Find Full Text PDF

An understanding of fruit gas exchange is necessary to determine the carbon balance in grapevines, but little attention has been paid to the relationships among fruit respiration, plant water status and genetic variability. The effect of plant water status and genotype on cluster respiration was studied over two seasons (2013 and 2014) under field conditions using a whole cluster respiration chamber. Whole cluster CO fluxes were measured in growing grapevines at hard-green, veraison and ripening stages under irrigated and non-irrigated conditions, and under light and dark conditions in two grapevine varieties, Tempranillo and Grenache.

View Article and Find Full Text PDF

By collecting data at spatial and temporal scales that are inaccessible to satellite and field observation, unmanned aerial vehicles (UAVs) are revolutionizing a number of scientific and management disciplines. UAVs may be particularly valuable for precision agricultural applications, offering strong potential to improve the efficiency of water, nutrient, and disease management. However, some authors have suggested that the UAV industry has overhyped the potential value of this technology for agriculture, given that it is difficult for non-specialists to operate UAVs as well as to process and interpret the resulting data.

View Article and Find Full Text PDF

Water scarcity is a main challenge in vineyards sustainability in most of the grapevine areas now and even more in near future due to climatic change perspectives. In consequence, water use efficiency (WUE) measurements are of the highest interest to improve the sustainability of this crop. The vast majority of WUE measurements relays on measurements of leaf carbon and water fluxes at leaf-level.

View Article and Find Full Text PDF

In the Mediterranean region, grapevines usually deal with drought during their summer growth season. Concurrently, grapevines are hosts to a large number of viruses from which grapevine leafroll associated virus-3 is one of the most widespread and provokes considerable economic losses in many vineyards. However, information concerning grapevine metabolic responses to the combination of drought and viral infection is scarce.

View Article and Find Full Text PDF

Respiration processes are well recognized as fundamental for the plant carbon balance, but little attention has been paid to the relationships among respiration rates, environment and genetic variability. This can be of particular interest to understand the differences in net carbon balances in crops as grapevines. Night respiration (R ) and its associated growth (R ) and maintenance (R ) components were evaluated during leaf expansion in two grapevine cultivars (Tempranillo cv.

View Article and Find Full Text PDF

Background: There is currently a high requirement for field phenotyping methodologies/technologies to determine quantitative traits related to crop yield and plant stress responses under field conditions.

Methods: We employed an unmanned aerial vehicle equipped with a thermal camera as a high-throughput phenotyping platform to obtain canopy level data of the vines under three irrigation treatments. High-resolution imagery (< 2.

View Article and Find Full Text PDF

Water limitation is one of the major threats affecting grapevine production. Thus, improving water-use efficiency (WUE) is crucial for a sustainable viticulture industry in Mediterranean regions. Under field conditions, water stress (WS) is often combined with viral infections as those are present in major grape-growing areas worldwide.

View Article and Find Full Text PDF

The main objective of this study was to apply the air-coupled broad-band ultrasonic spectroscopy in attached transpiring leaves of L. to monitor changes in leaf water potential (Ψ) through the measurements of the standardized value of the resonant frequency associated with the maximum transmitance (). With this purpose, the response of grapevine to a drought stress period was investigated in terms of leaf water status, ultrasounds, gas exchange and sugar accumulation.

View Article and Find Full Text PDF

Genetic improvement of crop Water Use Efficiency (WUE) is a general goal because the increasing water scarcity and the trend to a more sustainable agriculture. For grapevines, this subject is relevant and need an urgent response because their wide distribution in semi-arid areas. New cultivars are difficult to introduce in viticulture due to the narrow dependency of consumer appreciation often linked to a certain particular wine taste.

View Article and Find Full Text PDF

Among several biotic and abiotic stress combinations, interaction between drought and pathogen is one of the most studied combinations in some crops but still not in grapevine. In the present work, we focused on the interaction effects of biotic (GLRaV-3) and abiotic (drought) stresses on grapevine photosynthetic metabolism on two cultivars (cvs. 'Malvasia de Banyalbufar and Giro-Ros').

View Article and Find Full Text PDF

This study evaluates the long-term individual and combined effects of high temperature (HT) and water deficit (WD) stress on plant growth, leaf gas-exchange and water use efficiency in cultivars of the three most important crops worldwide, rice, wheat and maize. Total plant biomass (B ) accumulation decreased under all treatments, being the combined HT-WD treatment the most detrimental in all three species. Although decreases in B correlated with adjustments in biomass allocation patterns (i.

View Article and Find Full Text PDF

Previous studies have reported correlation of leaf hydraulic vulnerability with pressure-volume parameters related to cell turgor. This link has been explained on the basis of the effects of turgor on connectivity among cells and tissue structural integrity, which affect leaf water transport. In this study, we tested the hypothesis that osmotic adjustment to water stress would shift the leaf vulnerability curve toward more negative water potential (Ψ leaf ) by increasing turgor at low Ψ leaf .

View Article and Find Full Text PDF

WUEi (intrinsic water use efficiency) is a complex (multi)-trait, that depends on several physiological processes, driving plant productivity and its relation with a changing environment. Climatic change predictions estimate increases in temperature and drought in the semi-arid regions, rendering improved water use efficiency is a mandatory objective to maintain the current global food supply. The aims of this review were (i) to identify through a meta-analysis the leaf traits mostly related to intrinsic water use efficiency (WUEi, the ratio between A - net photosynthesis and gs - stomatal conductance), based on a newly compiled dataset covering more than 200 species/varieties and 106 genus of C3 plants (ii) to describe the main potential targets for WUEi improvement via biotechnological manipulations and (iii) to introduce emergent and innovative technologies including UAVs (Unmanned Aerial Vehicles) to scale up levels from leaf to whole plant water status.

View Article and Find Full Text PDF

Crown carbon gain is maximized for a given total water loss if stomatal conductance (gs ) varies such that the marginal carbon product of water (∂A/∂E) remains invariant both over time and among leaves in a plant crown, provided the curvature of assimilation rate (A) versus transpiration rate (E) is negative. We tested this prediction across distinct crown positions in situ for the first time by parameterizing a biophysical model across 14 positions in four grapevine crowns (Vitis vinifera), computing optimal patterns of gs and E over a day and comparing these to the observed patterns. Observed water use was higher than optimal for leaves in the crown interior, but lower than optimal in most other positions.

View Article and Find Full Text PDF

In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination.

View Article and Find Full Text PDF

The main objective of the present review is to provide a compilation of published data of the effects of several climatic conditions on Rubisco, particularly its activity, state of activation, and concentration, and its influence on leaf gas exchange and photosynthesis. The environmental conditions analyzed include drought, salinity, heavy metals, growth temperature, and elevated [O3], [CO2], and ultraviolet-B irradiance. The results show conclusive evidence for a major negative effect on activity of Rubisco with increasing intensity of a range of abiotic stress factors.

View Article and Find Full Text PDF

A key objective for sustainable agriculture and forestry is to breed plants with both high carbon gain and water-use efficiency (WUE). At the level of leaf physiology, this implies increasing net photosynthesis (A N) relative to stomatal conductance (g s). Here, we review evidence for CO2 diffusional constraints on photosynthesis and WUE.

View Article and Find Full Text PDF

Foliage photosynthetic and structural traits were studied in 15 species with a wide range of foliage anatomies to gain insight into the importance of key anatomical traits in the limitation of diffusion of CO2 from substomatal cavities to chloroplasts. The relative importance of different anatomical traits in constraining CO2 diffusion was evaluated using a quantitative model. Mesophyll conductance (g m) was most strongly correlated with chloroplast exposed surface to leaf area ratio (S c/S) and cell wall thickness (T cw), but, depending on foliage structure, the overall importance of g m in constraining photosynthesis and the importance of different anatomical traits in the restriction of CO2 diffusion varied.

View Article and Find Full Text PDF

The large water requirements of Vitis vinifera L. together with an increase in temperature and drought events imply the need for irrigation in the driest areas of its distribution range. Generous watering may reduce grape quality so irrigation should be precisely regulated through the development of new methods of accurate irrigation scheduling based on plant 'stress sensing'.

View Article and Find Full Text PDF

We examined the role of aquaporins (AQPs) in regulating leaf hydraulic conductance (Kleaf ) in Vitis vinifera L. (cv Chardonnay) by studying effects of AQP inhibitors, and AQP gene expression during water stress (WS) and recovery (REC). Kleaf was measured after 3 h of petiole perfusion with different solutions and to introduce inhibitors.

View Article and Find Full Text PDF

Mesophyll diffusion conductance to CO(2) is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g(m), and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation.

View Article and Find Full Text PDF

Water stress decreases the availability of the gaseous substrate for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by decreasing leaf conductance to CO(2). In spite of limiting photosynthetic carbon assimilation, especially in those environments where drought is the predominant factor affecting plant growth and yield, the effects of water deprivation on the mechanisms that control Rubisco activity are unclear. In the present study, 11 Mediterranean species, representing different growth forms, were subject to increasing levels of drought stress, the most severe one followed by rewatering.

View Article and Find Full Text PDF

The physiological traits underlying the apparent drought resistance of 'Tomàtiga de Ramellet' (TR) cultivars, a population of Mediterranean tomato cultivars with delayed fruit deterioration (DFD) phenotype and typically grown under non-irrigation conditions, are evaluated. Eight different tomato accessions were selected and included six TR accessions, one Mediterranean non-TR accession (NTR(M)) and a processing cultivar (NTR(O)). Among the TR accessions two leaf morphology types, normal divided leaves and potato-leaf, were selected.

View Article and Find Full Text PDF