Publications by authors named "Hinojal Zazo"

is the most common microorganism involved in many ICU-acquired infections. A correct dosage regimen is pivotal to avoiding resistance development, worse outcomes and higher mortality rates. The aim of this study was to perform a pharmacokinetic-pharmacodynamic (PK/PD) evaluation of recommended dosing regimens of ceftazidime-avibactam (CAZ-AVI) in ICU patients with different degrees of renal function for a specific strain of .

View Article and Find Full Text PDF

Each year, infections caused around the 25% of neonatal deaths. Early empirical treatments help to reduce this mortality, although optimized dosing regimens are still lacking. The aims were to develop and validate a gentamicin physiologically-based pharmacokinetic (PBPK) model and then potentially explore dosing regimens in neonates using pharmacokinetic and pharmacodynamic criteria.

View Article and Find Full Text PDF

Computational modelling has gained attention for evaluating nanoparticle-based drug delivery systems. Physiologically based pharmacokinetic (PBPK) modelling provides a mechanistic approach for evaluating drug biodistribution. The aim of this work is to develop a specific PBPK model to simulate stavudine biodistribution after the administration of a 40 nm gold nanoparticle-based drug delivery system in rats.

View Article and Find Full Text PDF

The human immunodeficiency virus (HIV) continues to be a global pandemic and there is an urgent need for innovative treatment. Immune cells represent a major target of virus infection, but are also therapeutic targets. Currently, no antiretroviral therapy targets macrophages, which function as portal of entry and as major long-term deposit of HIV.

View Article and Find Full Text PDF

For decades infections have been treated easily with drugs. However, in the 21st century, they may become lethal again owing to the development of antimicrobial resistance. Pathogens can become resistant by means of different mechanisms, such as increasing the time they spend in the intracellular environment, where drugs are unable to reach therapeutic levels.

View Article and Find Full Text PDF

The objectives of this study were to conduct a comparative pharmacokinetic/pharmacodynamic (PK/PD) evaluation using Monte Carlo simulation of conventional versus high-dose extended-interval dosage (HDED) regimens of amikacin (AMK) in intensive care unit (ICU) patients for an Acinetobacter baumannii infection model. The simulation was performed in five populations (a control population and four subpopulations of ICU patients). Using a specific AMK PK/PD model and Monte Carlo simulation, the following were generated: simulated AMK steady-state plasma level curves; PK/PD efficacy indexes [time during which the serum drug concentration remains above the minimum inhibitory concentration (MIC) for a dosing period (%T>MIC) and ratio of peak serum concentration to MIC (Cmax/MIC)]; evolution of bacterial growth curves; and adaptive resistance to treatment.

View Article and Find Full Text PDF