Publications by authors named "Hinh Ly"

Background: Live viral vector-based vaccines are known to elicit strong immune responses, but their use can be limited by anti-vector immunity. Here, we analyzed the immunological responses of a live-attenuated recombinant Pichinde virus (PICV) vector platform (rP18tri).

Methods: To evaluate anti-PICV immunity in the development of vaccine antigen-specific immune responses, we generated a rP18tri-based vaccine expressing the lymphocytic choriomeningitis virus (LCMV) nucleoprotein (NP) and administered four doses of this rP18tri-NPLCMV vaccine to mice.

View Article and Find Full Text PDF

Chandipura virus (CHPV) is a negative-, single-stranded RNA virus belonging to the family [...

View Article and Find Full Text PDF
Article Synopsis
  • Oropouche virus (OROV) is an arbovirus that causes "sloth fever," transmitted mainly by midges in both rural and urban areas.
  • Human infections can result in acute fever and, in severe cases, neurological issues, with over half a million people infected since its first detection in 1955.
  • The absence of FDA-approved vaccines and treatments means current care focuses on supportive measures, highlighting the importance of developing vaccines to control outbreaks, especially as OROV risk increases with climate change and global travel.
View Article and Find Full Text PDF

Mammarenaviruses include several highly virulent pathogens (e.g., Lassa virus) capable of causing severe hemorrhagic fever diseases for which there are no approved vaccines and limited treatment options.

View Article and Find Full Text PDF

Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.

View Article and Find Full Text PDF

Animal models are essential for studying disease pathogenesis and to test the efficacy and safety of new vaccines and therapeutics. For most diseases, there is no single model that can recapitulate all features of the human condition, so it is vital to understand the advantages and disadvantages of each. The purpose of this review is to describe popular comparative animal models, including mice, ferrets, hamsters, and non-human primates (NHPs), that are being used to study clinical and pathological changes caused by influenza A virus infection with the aim to aid in appropriate model selection for disease modeling.

View Article and Find Full Text PDF

Pichinde virus (PICV) can infect several animal species and has been developed as a safe and effective vaccine vector. Our previous study showed that pigs vaccinated with a recombinant PICV-vectored vaccine expressing the hemagglutinin (HA) gene of an H3N2 influenza A virus of swine (IAV-S) developed virus-neutralizing antibodies and were protected against infection by the homologous H3N2 strain. The objective of the current study was to evaluate the immunogenicity and protective efficacy of a trivalent PICV-vectored vaccine expressing HA antigens from the three co-circulating IAV-S subtypes: H1N1, H1N2, and H3N2.

View Article and Find Full Text PDF