The excited-state lifetime is an intrinsic property of fluorescent molecules that can be leveraged for multiplexed imaging. An advantage of fluorescence lifetime-based multiplexing is that signals from multiple probes can be gathered simultaneously, whereas traditional spectral fluorescence imaging typically requires multiple images at different excitation and emission wavelengths. Additionally, lifetime and spectra could both be utilized to expand the multiplexing capacity of fluorescence.
View Article and Find Full Text PDFHighly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogues capable of hybridizing to complementary nucleic acids with high affinity and high specificity.
View Article and Find Full Text PDFBackground: Previous studies have demonstrated that the humerus slides along the long head of the biceps tendon (LHBT). Blocking this motion may result in decreased glenohumeral (GH) range of motion (ROM). The goal of the study was to characterize the excursion of the LHBT and measure the effect of biceps adhesions on GH ROM.
View Article and Find Full Text PDF