Publications by authors named "Hindsgaul O"

Here we describe the design of 1,2-phenylenediamine capturing molecule and the synthesis steps necessary for its preparation. The designed 1,2-phenylenediamine derivative is able to capture diacetyl in solution, as shown by ESIMS, forming a chemical adduct, 1-4-quinoxaline. The methyl esters of diacetyl-adduct (DAA) and pentanedione-adduct (PDA) are incorporated to the lysines in BSA and the conjugate used for antibody screening and selection.

View Article and Find Full Text PDF

Diacetyl (2,3-butanedione) is an important metabolic marker of several cancers, as well as an important off-flavour component produced during fermentation. As a small molecule in a complex mixture with many other analytes, existing methods for identification and quantitation of diacetyl invariably involves a chromatographic separation step followed by signal integration with an appropriate stoichiometric detector. Here we demonstrate that the chemical reaction of diacetyl with a 1,2-phenylenediamine derivative yields a chemical adduct, 1,4-quinoxaline which can be conjugated on BSA.

View Article and Find Full Text PDF

An α-L-arabinofuranosidase of GH62 from Aspergillus nidulans FGSC A4 (AnAbf62A-m2,3) has an unusually high activity towards wheat arabinoxylan (WAX) (67 U/mg; k cat = 178/s, K m = 4.90 mg/ml) and arabinoxylooligosaccharides (AXOS) with degrees of polymerisation (DP) 3-5 (37-80 U/mg), but about 50 times lower activity for sugar beet arabinan and 4-nitrophenyl-α-L-arabinofuranoside. α-1,2- and α-1,3-linked arabinofuranoses are released from monosubstituted, but not from disubstituted, xylose in WAX and different AXOS as demonstrated by NMR and polysaccharide analysis by carbohydrate gel electrophoresis (PACE).

View Article and Find Full Text PDF

Twenty-four malt samples were assayed for limit dextrinase activity using a chromogenic assay developed recently in our group. The assay utilizes a small soluble chromogenic substrate which is hydrolyzed selectively by limit dextrinase in a coupled assay to release the chromophore 2-chloro-4-nitrophenol. The release of the chromophore, corresponding to the activity of limit dextrinase, can be followed by measuring the UV absorption at 405 nm.

View Article and Find Full Text PDF

Starch provides our main dietary caloric intake and over-consumption of starch-containing foods results in escalating life-style disease including diabetes. By increasing the content of α-1,6 branch points in starch, digestibility by human amylolytic enzymes is expected to be retarded. Aiming at generating a soluble and slowly digestible starch by increasing the content and changing the relative positioning of the branch points in the starch molecules, we treated cassava starch with amylomaltase (AM) and branching enzyme (BE).

View Article and Find Full Text PDF

Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that confine high activity of LD to branched maltooligosaccharides.

View Article and Find Full Text PDF

β-Glucans from cereals are β(1-3)(1-4)-mixed linkage linear homopolysaccharides of D-glucopyranosyl residues, recently recognised as functional components of foods with benefits in maintaining the health of the digestive tract not least through a prebiotic effect. Here we describe the development of methodology to facilitate the study of β-glucans as prebiotics. Relatively short β-glucan fragments (DP 6-50) were produced by partial hydrolysis of β-glucan fibres with Lichenase then functionalised at their reducing end with a tetramethylrhodamine dye.

View Article and Find Full Text PDF

Glycosyltransferases (GTs) catalyse the sequential addition of monosaccharides to specific acceptor molecules and play major roles in key biological processes. GTs are classified into two main families depending on the inverted or retained stereochemistry of the glycosidic bond formed during the reaction. While the mechanism of inverting enzymes is well characterized, the precise nature of retaining GTs is still a matter of much debate.

View Article and Find Full Text PDF

1H and 13C NMR chemical shifts were accurately determined by consistent referencing for an extensive set of chemically synthesized branched α-glucan model compounds. The model compounds include anomerically fixed and reducing oligosaccharides ranging in size from isomaltose to a doubly branched decasaccharide. Both the 13C1 chemical shift and the 13C6 chemical shifts in α-(1→6) glycosidic bonds are strongly dependent on the chemical structure in the vicinity of the branch point, especially on the addition of glucopyranosyl units towards the non-reducing end of the backbone chain.

View Article and Find Full Text PDF

Chemoenzymatic oligosaccharide synthesis is attractive since it eliminates the tedious multistep protection-deprotection requirements of pure chemical synthesis. Chemoenzymatic synthesis using glycosyltransferases, however, requires not only the correct enzyme to control both regio- and stereospecificity, but also the glycosyl donor to provide the sugar that is added. This unit describes a simple synthesis of sugar-nucleoside diphosphates (sugar-NDPs), the type of glycosyl donor (e.

View Article and Find Full Text PDF

The structure of the serotype 47A (Danish nomenclature system) capsular polysaccharide from Streptococcus pneumoniae was elucidated by NMR spectroscopy. The following structure of the repeating heptasaccharide was deduced: [structure: see text]. The serotype 47A capsular polysaccharide is one of 91 structurally and serologically distinct capsular polysaccharides that have been recognized in S.

View Article and Find Full Text PDF

Long α(1-4)-linked glucopyranose branches in the starch polysaccharide amylopectin can be detected by the specific binding of an anionic amphiphilic fluorescent probe. The probe forms spermidine-stabilised micelles in water resulting in fluorescence quenching. By extracting the probe from the micelles polysaccharides are detected in a "turn-on" fluorescence assay.

View Article and Find Full Text PDF

A plethora of biological and biotechnological processes involve the enzymatic remodelling of carbohydrates in complex mixtures whose compositions affect both the processes and products. In the current study, we employed high-resolution (1)H NMR spectroscopy for the analysis of cereal-derived carbohydrate mixtures as exemplified on six beer samples of different styles. Structural assignments of more than 50 carbohydrate moieties were obtained using (1)H1-(1)H2 groups as structural reporters.

View Article and Find Full Text PDF

A new chromogenic substrate to assay the starch debranching enzymes limit dextrinase and pullulanase is described. The 2-chloro-4-nitrophenyl glycoside of a commercially available branched heptasaccharide (Glc-maltotriosyl-maltotriose) was found to be a suitable specific substrate for starch debranching enzymes and allows convenient assays of enzymatic activities in a format suited for high-throughput analysis. The kinetic parameters of these enzymes toward the synthesized substrate are determined, and the selectivity of the substrate in a complex cereal-based extract is established.

View Article and Find Full Text PDF

Complex mixtures of carbohydrates pose distinct challenges in routine and high-throughput analysis, so that only a few carbohydrate components are routinely resolved and identified in biofluids, extracts, foods and other complex mixtures. Here, we conduct precise measurements of (1)H and (13)C anomeric chemical shifts to construct a reference library of specific carbohydrate signals with high-resolution two-dimensional (1)H-(13)C NMR spectra. High-resolution multidimensional NMR spectra largely abolish resolution problems in carbohydrate analysis with state-of-the-art instrumentation.

View Article and Find Full Text PDF

Analytical challenges in the direct time-resolved observation of starch metabolism have been addressed by using optimized multidimensional NMR experiments. Starch provides the main source of human dietary energy intake and is a raw material for beverage and renewable fuel production. Use of direct in situ observations of starch remodeling pathways could facilitate our understanding and control of processes of biotechnological, medical, and environmental relevance.

View Article and Find Full Text PDF

Branched starch polysaccharides are capable of binding multiple hydrophobic guests, but their exploitation as multivalent hosts and in functional materials is limited by their structural complexity and diversity. Linear α(1-4)-linked glucose oligosaccharides are known to bind hydrophobic guests inside left-handed single helices in solution and the solid state. Here, we describe the development of an amphiphilic probe that binds to linear α(1-4)-linked glucose oligosaccharides and undergoes a conformational switch upon complexation, which gives rise to dramatic changes in the (1)H NMR spectrum of the probe.

View Article and Find Full Text PDF

Hang on to those branches! Amylopectin, the major polysaccharide of starch, is a predominantly α(1,4)-linked glucan whose properties are defined by its size and the number, distribution, and length of its α(1,6)-linked branches. The amphiphilic probe HPTS-C16 H33 binds to terminal helical branches longer than 12 glucose units (green), which allows for a detailed quantitative characterization of polysaccharide branching by (1) H NMR spectroscopy.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) spectroscopy is a widely used technique for mixture analysis, but it has shortcomings in resolving carbohydrate mixtures due to the narrow chemical shift range of glycans in general and fragments of homopolymers in particular. Here, we suggest a protocol toward fast spectroscopic glycan mixture analysis. We show that a plethora of oligosaccharides comprising only α-glucopyranosyl residues can be resolved into distinct quantifiable signals with NMR experiments that are substantially faster than chromatographic runs.

View Article and Find Full Text PDF

Gram negative bacteria have lipopolysaccharides (LPS) that are critical for their survival. LPS molecules are composed of antigenic exopolysaccharide chains (O antigens). We are interested in discovering the enzymes involved in the biosynthesis of O antigens in Pseudomonas aeruginosa.

View Article and Find Full Text PDF

The degradation of β-glucans from cereal cell walls is related to health benefits of whole grain foodstuffs and is a prominent cost in the production of bioethanol and in improving the filterability of malt-based beverages. Detailed assays of β-glucan degradation pathways by enzyme mixtures therefore promise to support the analysis of physiological and the optimization of technological processes. Physiological and biotechnological processes tend to occur in complex mixtures of catalysts and substrates and the development of advanced methodologies for mixture analysis has been attracting a great deal of attention.

View Article and Find Full Text PDF

A capillary electrophoresis system with an ultrasensitive three-color laser-induced fluorescence detector was constructed for the simultaneous measurement of glycosphingolipids conjugated with a family of BODIPY fluorophores. The compounds were separated by capillary electrophoresis and detected by laser-induced fluorescence excited within a sheath-flow cuvette. Diode-pumped solid-state lasers operating at 473 nm and 532 nm, and a diode laser operating at 633 nm were used to excite glycosphingolipids tagged with BODIPY-FL, BODIPY-TMR, and BODIPY-650/665 fluorophores.

View Article and Find Full Text PDF

Fluorescently tagged glycosides containing terminal α(1→3) and α(1→4)-linked thiogalactopyranosides have been prepared and tested for resistance to hydrolysis by α-galactosidases. Eight fluorescent glycosides containing either galactose or 5-thiogalactose as the terminal sugar were enzymatically synthesized using galactosyltransferases, with lactosyl glycosides as acceptors and UDP-galactose or UDP-5'-thiogalactose, respectively, as donors. The glycosides were incubated with human α-galactosidase A (CAZy family GH27, a retaining glycosidase), Bacteroides fragilis α-1,3-galactosidase (GH110, an inverting glycosidase), or homogenates of MCF-7 human breast cancer cells or NG108-15 rat glioma cells.

View Article and Find Full Text PDF