Publications by authors named "Hindriks R"

Blood-level oxygenation-dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most common modality to study functional connectivity in the human brain. Most research to date has focused on connectivity between pairs of brain regions. However, attention has recently turned towards connectivity involving more than two regions, that is, higher-order connectivity.

View Article and Find Full Text PDF

Functional connectivity in electroencephalography (EEG) and magnetoencephalography (MEG) data is commonly assessed by using measures that are insensitive to instantaneously interacting sources and as such would not give rise to false positive interactions caused by instantaneous mixing of true source signals (first-order mixing). Recent studies, however, have drawn attention to the fact that such measures are still susceptible to instantaneous mixing from lagged sources (i.e.

View Article and Find Full Text PDF

Characterising brain states during tasks is common practice for many neuroscientific experiments using electrophysiological modalities such as electroencephalography (EEG) and magnetoencephalography (MEG). Brain states are often described in terms of oscillatory power and correlated brain activity, i.e.

View Article and Find Full Text PDF

Well-known haemodynamic resting-state networks are better mirrored in power correlation networks than phase coupling networks in electrophysiological data. However, what do these power correlation networks reflect? We address this long-outstanding question in neuroscience using rigorous mathematical analysis, biophysical simulations with ground truth and application of these mathematical concepts to empirical magnetoencephalography (MEG) data. Our mathematical derivations show that for two non-Gaussian electrophysiological signals, their power correlation depends on their coherence, cokurtosis and conjugate-coherence.

View Article and Find Full Text PDF

Tools from the field of graph signal processing, in particular the graph Laplacian operator, have recently been successfully applied to the investigation of structure-function relationships in the human brain. The eigenvectors of the human connectome graph Laplacian, dubbed "connectome harmonics", have been shown to relate to the functionally relevant resting-state networks. Whole-brain modelling of brain activity combines structural connectivity with local dynamical models to provide insight into the large-scale functional organization of the human brain.

View Article and Find Full Text PDF

Measurements on physical systems result from the systems' activity being converted into sensor measurements by a forward model. In a number of cases, inversion of the forward model is extremely sensitive to perturbations such as sensor noise or numerical errors in the forward model. Regularization is then required, which introduces bias in the reconstruction of the systems' activity.

View Article and Find Full Text PDF

The prevailing view on the dynamics of large-scale electrical activity in the human cortex is that it constitutes a functional network of discrete and localized circuits. Within this view, a natural way to analyse magnetoencephalographic (MEG) and electroencephalographic (EEG) data is by adopting methods from network theory. Invasive recordings, however, demonstrate that cortical activity is spatially continuous, rather than discrete, and exhibits propagation behavior.

View Article and Find Full Text PDF

Due to the low temporal resolution of BOLD-fMRI, imaging studies on human brain function have almost exclusively focused on instantaneous correlations within the data. Developments in hardware and acquisition protocols, however, are offering data with higher sampling rates that allow investigating the latency structure of BOLD-fMRI data. In this study we describe a method for analyzing the latency structure within BOLD-fMRI data and apply it to resting-state data of 94 participants from the Human Connectome Project.

View Article and Find Full Text PDF

The discovery of hemodynamic (BOLD-fMRI) resting-state networks (RSNs) has brought about a fundamental shift in our thinking about the role of intrinsic brain activity. The electrophysiological underpinnings of RSNs remain largely elusive and it has been shown only recently that electric cortical rhythms are organized into the same RSNs as hemodynamic signals. Most electrophysiological studies into RSNs use magnetoencephalography (MEG) or scalp electroencephalography (EEG), which limits the spatial resolution with which electrophysiological RSNs can be observed.

View Article and Find Full Text PDF

Planar intra-cortical electrode (Utah) arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD) underlying such recordings, however, requires "inverting" Poisson's equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs).

View Article and Find Full Text PDF

A popular way to analyze resting-state electroencephalography (EEG) and magneto encephalography (MEG) data is to treat them as a functional network in which sensors are identified with nodes and the interaction between channel time series and the network connections. Although conceptually appealing, the network-theoretical approach to sensor-level EEG and MEG data is challenged by the fact that EEG and MEG time series are mixtures of source activity. It is, therefore, of interest to assess the relationship between functional networks of source activity and the ensuing sensor-level networks.

View Article and Find Full Text PDF

Recent research has found that the human sleep cycle is characterised by changes in spatiotemporal patterns of brain activity. Yet, we are still missing a mechanistic explanation of the local neuronal dynamics underlying these changes. We used whole-brain computational modelling to study the differences in global brain functional connectivity and synchrony of fMRI activity in healthy humans during wakefulness and slow-wave sleep.

View Article and Find Full Text PDF

The functional architecture of spontaneous BOLD fluctuations has been characterized in detail by numerous studies, demonstrating its potential relevance as a biomarker. However, the systematic investigation of its consistency is still in its infancy. Here, we analyze within- and between-subject variability and test-retest reliability of resting-state functional connectivity (FC) in a unique data set comprising multiple fMRI scans (42) from 5 subjects, and 50 single scans from 50 subjects.

View Article and Find Full Text PDF

Multi-electrode recordings of local field potentials (LFPs) provide the opportunity to investigate the spatiotemporal organization of neural activity on the scale of several millimeters. In particular, the phases of oscillatory LFPs allow studying the coordination of neural oscillations in time and space and to tie it to cognitive processing. Given the computational roles of LFP phases, it is important to know how they relate to the phases of the underlying current source densities (CSDs) that generate them.

View Article and Find Full Text PDF

The default mode network (DMN) is a commonly observed resting-state network (RSN) that includes medial temporal, parietal, and prefrontal regions involved in episodic memory [1-3]. The behavioral relevance of endogenous DMN activity remains elusive, despite an emerging literature correlating resting fMRI fluctuations with memory performance [4, 5]-particularly in DMN regions [6-8]. Mechanistic support for the DMN's role in memory consolidation might come from investigation of large deflections (sharp-waves) in the hippocampal local field potential that co-occur with high-frequency (>80 Hz) oscillations called ripples-both during sleep [9, 10] and awake deliberative periods [11-13].

View Article and Find Full Text PDF

During the last several years, the focus of research on resting-state functional magnetic resonance imaging (fMRI) has shifted from the analysis of functional connectivity averaged over the duration of scanning sessions to the analysis of changes of functional connectivity within sessions. Although several studies have reported the presence of dynamic functional connectivity (dFC), statistical assessment of the results is not always carried out in a sound way and, in some studies, is even omitted. In this study, we explain why appropriate statistical tests are needed to detect dFC, we describe how they can be carried out and how to assess the performance of dFC measures, and we illustrate the methodology using spontaneous blood-oxygen level-dependent (BOLD) fMRI recordings of macaque monkeys under general anesthesia and in human subjects under resting-state conditions.

View Article and Find Full Text PDF

In the absence of cognitive tasks and external stimuli, strong rhythmic fluctuations with a frequency ≈ 10 Hz emerge from posterior regions of human neocortex. These posterior α-oscillations can be recorded throughout the visual cortex and are particularly strong in the calcarine sulcus, where the primary visual cortex is located. The mechanisms and anatomical pathways through which local \alpha-oscillations are coordinated however, are not fully understood.

View Article and Find Full Text PDF

The most salient feature of spontaneous human brain activity as recorded with electroencephalography (EEG) are rhythmic fluctuations around 10Hz. These alpha oscillations have been reported to propagate over the scalp with velocities in the range of 5-15m/s. Since these velocities are in the range of action potential velocities through cortico-cortical axons, it has been hypothesized that the observed scalp waves reflect cortico-cortically mediated propagation of cortical oscillations.

View Article and Find Full Text PDF

The EEG of patients in non-convulsive status epilepticus (NCSE) often displays delta oscillations or generalized spike-wave discharges. In some patients, these delta oscillations coexist with intermittent epileptic spikes. In this study we verify the prediction of a computational model of the thalamo-cortical system that these spikes are phase-locked to the delta oscillations.

View Article and Find Full Text PDF

Objectives: Generalized periodic discharges (GPDs) can be observed in the electroencephalogram (EEG) of patients after acute cerebral ischemia and reflect pathological neuronal synchronization. Whether GPDs represent ictal activity, which can be treated with anti-epileptic drugs, or severe ischemic damage, in which treatment is futile, is unknown. We hypothesize that GPDs result from selective ischemic damage of glutamatergic synapses, which are known to be relatively vulnerable to effects of ischemia.

View Article and Find Full Text PDF

Although a large number of studies have been devoted to establishing correlations between changes in amplitude and frequency of EEG alpha oscillations and cognitive processes, it is currently unclear through which physiological mechanisms such changes are brought about. In this study we use a biophysical model of EEG generation to gain a fundamental understanding of the functional changes within the thalamo-cortical system that might underly such alpha responses. The main result of this study is that, although the physiology of the thalamo-cortical system is characterized by a large number of parameters, alpha responses effectively depend on only three variables.

View Article and Find Full Text PDF

During the maintenance period of propofol-induced general anesthesia, specific changes in spontaneous EEG rhythms can be observed. These comprise increased delta and theta power and the emergence of alpha oscillations over frontal regions. In this study we use a meanfield model of the thalamo-cortical system to reproduce these changes and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF