Publications by authors named "Hind Mizhir Mousa"

Background: Under inflammatory conditions, the activation of corticotropin-releasing factor (CRF) receptor has been shown to inhibit pain through opioid peptide release from immune cells or neurons. CRF's effects on human and animal pain modulation depend, however, on the distribution of its receptor subtypes 1 and 2 (CRF-R1 and CRF-R2) along the neuraxis of pain transmission. The objective of this study is to investigate the respective role of each CRF receptor subtype on centrally administered CRF-induced antinociception during inflammatory pain.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) orchestrates our body's response to stressful stimuli. Pain is often stressful and counterbalanced by activation of CRF receptors along the nociceptive pathway, although the involvement of the CRF receptor subtypes 1 and/or 2 (CRF-R1 and CRF-R2, respectively) in CRF-induced analgesia remains controversial. Thus, the aim of the present study was to examine CRF-R1 and CRF-R2 expression within the spinal cord of rats with Freund's complete adjuvant-induced unilateral inflammation of the hind paw using reverse transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis.

View Article and Find Full Text PDF

Pancreatic cancer decreases survival time and quality of life because of drug resistance and peripheral neuropathy during conventional treatment. This study was undertaken to investigate whether αvβ3 integrin receptor antagonist compounds NDAT and XT199 can suppress the development of cisplatin resistance and cisplatin-induced peripheral neuropathy in an orthotopic pancreatic SUIT2-luc cancer cell mouse model. Anticancer effects of these compounds and their combination with cisplatin were assessed in this tumor mouse model with bioluminescent signaling and histopathology, and a cytokine assay was used to examine expression of inflammatory cytokines IL-1β, IL-6, IL-10, and TNF-α from plasma samples.

View Article and Find Full Text PDF

Background: Recent emerging evidence suggests that extra-adrenal synthesis of aldosterone occurs (e.g., within the failing heart and in certain brain areas).

View Article and Find Full Text PDF

Background: In naive rats, corticosteroids activate neuronal membrane-bound glucocorticoid and mineralocorticoid receptors in spinal cord and periphery to modulate nociceptive behavior by nongenomic mechanisms. Here we investigated inflammation-induced changes in neuronal versus glial glucocorticoid and mineralocorticoid receptors and their ligand-mediated nongenomic impact on mechanical nociception in rats.

Methods: In Wistar rats (n = 5 to 7/group) with Freund's complete adjuvant hind paw inflammation, we examined glucocorticoid and mineralocorticoid receptor expression in spinal cord and peripheral sensory neurons versus glial using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot, immunohistochemistry, and radioligand binding.

View Article and Find Full Text PDF

Acupuncture is widely used for pain treatment in patients with osteoarthritis or low back pain, but molecular mechanisms remain largely enigmatic. In the early phase of inflammation neutrophilic chemokines direct opioid-containing neutrophils in the inflamed tissue and stimulate opioid peptide release and antinociception. In this study the molecular pathway and neuroimmune connections in complete Freund's adjuvant (CFA)-induced hind paw inflammation and electroacupuncture for peripheral pain control were analyzed.

View Article and Find Full Text PDF

Background: Leukocytes containing opioid peptides locally control inflammatory pain. In the early phase of complete Freund's adjuvant (CFA)-induced hind paw inflammation, formyl peptides (derived e.g.

View Article and Find Full Text PDF

Endogenous opioids are known to be released within certain brain areas following stressful stimuli. Recently, it was shown that also leukocytes are a potential source of endogenously released opioid peptides following stress. They activate sensory neuron opioid receptors and result in the inhibition of local inflammatory pain.

View Article and Find Full Text PDF

Background: Neurokinins (e.g., substance P) contribute to pain transmission in the central nervous system, peripheral neurogenic inflammation, and leukocyte recruitment in inflammation.

View Article and Find Full Text PDF

Nerve growth factor (NGF) regulates sensory neuron phenotype by elevated expression of ion channels and receptors contributing to pain. Peripheral opioid antinociception is dependent on sensory neuron mu opioid receptor (MOR) expression, coupling and efficacy. This study investigates the role of NGF in the upregulation of the number and efficacy of sensory MORs rendering sites of painful inflammation more susceptible to opioids.

View Article and Find Full Text PDF

The widespread use of neuraxial anaesthesia increases the need for animal models to evaluate therapeutic prospects, mechanisms and risks of this technique. As a methodological prerequisite, we characterised the sympathetic blockade after different modes of neuraxial anaesthesia with regard to segments supplying the splanchnic region. Under haemodynamic monitoring, lidocaine 2% or saline were infused via intrathecal (10 microl), lumbar epidural (10 and 30 microl) or thoracic epidural (10 and 30 microl) catheters.

View Article and Find Full Text PDF

Stress induces analgesia by mechanisms within and outside the brain. Here we show that the sympathetic nervous system is an essential trigger of intrinsic opioid analgesia within peripheral injured tissue. Noradrenaline, injected directly into inflamed hind paws of male Wistar rats, produced dose-dependent antinociception, reversible by alpha(1)-, alpha(2)- and beta(2)-antagonists.

View Article and Find Full Text PDF

1. Control of inflammatory pain can result from activation of opioid receptors on peripheral sensory nerves by opioid peptides secreted from leukocytes in response to stress (e.g.

View Article and Find Full Text PDF

In painful inflammation, exogenous as well as endogenous corticotropin-releasing hormone (CRH) can release opioid peptides (mainly beta-endorphin) from various types of immune cells and produce antinociception by activating opioid receptors on peripheral sensory nerve endings. CRH mediates its central effects through two high-affinity membrane receptors, the CRH receptor subtypes 1 and 2. It is unclear at present whether the peripheral antinociceptive effects of CRH are mediated through CRH receptor 1 (CRH R1) or CRH receptor 2 (CRH R2).

View Article and Find Full Text PDF

Background: Peripheral tissue injury causes a migration of opioid peptide-containing immune cells to the inflamed site. The subsequent release and action of these peptides on opioid receptors localized on peripheral sensory nerve terminals causes endogenous analgesia. The spinal application of opioid drugs blocks the transmission of nociceptive information from peripheral injury.

View Article and Find Full Text PDF

Background: Inflammatory pain can be effectively controlled by an interaction of opioid receptors on peripheral sensory nerve terminals with opioid peptides released from immune cells upon stressful stimulation. To define the source of opioid peptide production, we sought to identify and quantify populations of opioid-containing cells during the course of Freund's complete adjuvant-induced hind paw inflammation in the rat. In parallel, we examined the development of stress-induced local analgesia in the paw.

View Article and Find Full Text PDF

Background: This study investigates two new kappa-agonist tetrapeptides, FE 200665 and FE 200666, with high peripheral selectivity as a result of poor central nervous system penetration.

Methods: Four days after administration of Freund adjuvant into the hind paw of male Wistar rats, antinociceptive effects of intraplantar and subcutaneous injection of FE 200665 and FE 200666 were measured by paw pressure algesiometry and compared with the kappa-agonist U-69,593. Peripheral and kappa-receptor selectivity was assessed by the antagonists naloxone methiodide (NLXM) and nor-binaltorphimine, respectively.

View Article and Find Full Text PDF