Naturally colored cotton (NCC) offers an environmentally friendly fiber for textile applications. Processing white cotton fiber into textiles requires extensive energy, water, and chemicals, whereas processing of NCC skips the most polluting activity, scouring-bleaching and dyeing; therefore, NCC provides an avenue to minimize the harmful impacts of textile production. NCC varieties are suitable for organic agriculture since they are naturally insect and disease-resistant, salt and drought-tolerant.
View Article and Find Full Text PDFNaturally-colored brown cotton (NBC) fiber is an environmentally friendly raw source of fiber for textile applications. The fiber of some NBC cultivars exhibits flame-retardant properties, which can be used in textiles that require flame resistance. Proanthocyanidins or their derivatives are responsible for the brown pigment in NBC; however, how flame retardancy is related to pigmentation in NBC is poorly understood.
View Article and Find Full Text PDFThe need for prehospital hemostatic dressings that exert an antibacterial effect is of interest for prolonged field care. Here, we consider a series of antibacterial and zeolite formulary treatment approaches applied to a cotton-based dressing. The design of the fabric formulations was based on the hemostatic dressing TACGauze with zeolite Y incorporated as a procoagulant with calcium and pectin to facilitate fiber adherence utilizing silver nanoparticles, and cellulose-crosslinked ascorbic acid to confer antibacterial activity.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2023
Cerebral sinus venous thrombosis (CSVT) is an uncommon disease that is usually treated with anticoagulation (heparin, low-molecular heparin, or vitamin K-antagonists). We compared treatment with edoxaban, an oral factor Xa-antagonist, that has not been approved in patients with CSVT, with enoxaparin, a well-established therapy, in a rat model of CSVT. Fifty male Wistar rats were randomized into 5 groups (10 animals each) and subjected to aluminum chloride (AlCl3)-induced thrombosis of the superior sagittal sinus (SSS) or sham procedure.
View Article and Find Full Text PDFIn this study, a simple and effective way to produce washable antimicrobial wipes was developed based on the unique ability of raw cotton fiber to produce silver nanoparticles. A nanocomposite substructure of silver nanoparticles (25 ± 3 nm) was generated in raw cotton fiber without reducing and stabilizing agents. This nanocomposite raw cotton fiber (2100 ± 58 mg/kg in the concentration of silver) was blended in the fabrication of nonwoven wipes.
View Article and Find Full Text PDFTextiles made from cotton fibers are flammable and thus often include flame retardant additives for consumer safety. Transgressive segregation in multi-parent populations facilitates new combinations of alleles of genes and can result in traits that are superior to those of any of the parents. A screen of 257 recombinant inbred lines from a multi-parent advanced generation intercross (MAGIC) population for naturally enhance flame retardance (FR) was conducted.
View Article and Find Full Text PDFIn this study, hydroentangled cotton nonwovens were identified as effective hosts for mineralization of calcium carbonate (CaCO) polymorphs to modify and improve their properties. All cotton varieties studied, including raw white cotton, scoured white cotton, and raw brown cotton, readily crystallized CaCO a simple cyclic dipping process. A combination of analyses agreed that the surface chemistry of cotton fibers influenced the formation of different CaCO polymorphs.
View Article and Find Full Text PDFXyloglucan is a matrix polysaccharide found in the cell walls of all land plants. In growing cells, xyloglucan is thought to connect cellulose microfibrils and regulate their separation during wall extension. Ligon lintless-2 (Li) is a monogenic dominant cotton fiber mutation that causes extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth.
View Article and Find Full Text PDFGreige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H₂O₂) generation during cotton fiber development. Traditionally, the processing of cotton into gauze involves scouring and bleaching processes that remove the components in the cuticle and primary cell wall.
View Article and Find Full Text PDFThe pecan nut is a nutrient-rich part of a healthy diet full of beneficial fatty acids and antioxidants, but can also cause allergic reactions in people suffering from food allergy to the nuts. The transcriptome of a developing pecan nut was characterized to identify the gene expression occurring during the process of nut development and to highlight those genes involved in fatty acid metabolism and those that commonly act as food allergens. Pecan samples were collected at several time points during the embryo development process including the water, gel, dough, and mature nut stages.
View Article and Find Full Text PDFBackground: Cotton supplies a great majority of natural fiber for the global textile industry. The negative correlation between yield and fiber quality has hindered breeders' ability to improve these traits simultaneously. A multi-parent advanced generation inter-cross (MAGIC) population developed through random-mating of multiple diverse parents has the ability to break this negative correlation.
View Article and Find Full Text PDFSome naturally coloured brown cotton fibres from accessions of Gossypium hirsutum L. can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have not yet been identified, and the mechanism of lint fibre FR is not yet fully understood.
View Article and Find Full Text PDFBackground: The length of cotton fiber is an important agronomic trait that directly affects the quality of yarn and fabric. Understanding the molecular basis of fiber elongation would provide a means for improvement of fiber length. Ligon-lintless-1 (Li 1 ) and -2 (Li 2 ) are monogenic and dominant mutations that result in an extreme reduction in the length of lint fiber on mature seeds.
View Article and Find Full Text PDFThe influence of different feedstuffs on parameters of digestion and ethology in growing rabbits (duration and number of feed intake, needed masticatory movements, pH value in stomach and small intestine, dry matter content of stomach chyme, level of destruction of cell structures in small intestine) was analysed. 384 five weeks old rabbits were fed with one of three feedstuffs: pellets (mean fibre length = 3 mm), fibre blocks (mean fibre length = 40 mm) and hay-oat-beat-ration (length of hay fibre ≥ 70 mm). The masticatory movements and duration for uptake 0.
View Article and Find Full Text PDFThe number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for fiber initial differentiation have been discovered.
View Article and Find Full Text PDFNext generation sequencing (RNA-seq) technology was used to evaluate the effects of the Ligon lintless-2 (Li2) short fiber mutation on transcriptomes of both subgenomes of allotetraploid cotton (Gossypium hirsutum L.) as compared to its near-isogenic wild type. Sequencing was performed on 4 libraries from developing fibers of Li2 mutant and wild type near-isogenic lines at the peak of elongation followed by mapping and PolyCat categorization of RNA-seq data to the reference D5 genome (G.
View Article and Find Full Text PDFLigon lintless-2, a monogenic dominant cotton (Gossypium hirsutum L.) fiber mutation, causing extreme reduction in lint fiber length with no pleiotropic effects on vegetative growth, represents an excellent model system to study fiber elongation. A UDP-glycosyltransferase that was highly expressed in developing fibers of the mutant Ligon lintless-2 was isolated.
View Article and Find Full Text PDFBackground: The length of cotton fiber is an important agronomic trait characteristic that directly affects the quality of yarn and fabric. The cotton (Gossypium hirsutum L.) fiber mutation, Ligon lintless-2, is controlled by a single dominant gene (Li(2)) and results in extremely shortened lint fibers on mature seeds with no visible pleiotropic effects on vegetative growth and development.
View Article and Find Full Text PDFCellulose synthase catalytic subunits (CesAs) are the catalytic sites within a multisubunit complex for cellulose biosynthesis in plants. CesAs have been extensively studied in diploid plants, but are not well characterized in polyploid plants. Gossypium hirsutum is an allotetraploid cotton species producing over 90% of the world's cotton fibers.
View Article and Find Full Text PDFBackground: Cotton fiber length is an important quality attribute to the textile industry and longer fibers can be more efficiently spun into yarns to produce superior fabrics. There is typically a negative correlation between yield and fiber quality traits such as length. An understanding of the regulatory mechanisms controlling fiber length can potentially provide a valuable tool for cotton breeders to improve fiber length while maintaining high yields.
View Article and Find Full Text PDFGene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis.
View Article and Find Full Text PDFA pilot toxicology database system has been created which is accessible on-line via the world-wide web or in-house via an intranet. It is intended to be suitable as a source of toxicological information and to support structure-activity relationship studies, and it can be searched on chemical structural and substructural as well as toxicological and physico-chemical data. Successful completion of the pilot has led to an ongoing project to develop and expand the system.
View Article and Find Full Text PDFDegenerate primers designed from conserved motifs of known plant resistance gene products were used to amplify genomic DNA sequences from the root-knot nematode (Meloidogyne incognita) resistance genetic source, Upland cotton (Gossypium hirsutum) cultivar Auburn 634 RNR. A total of 165 clones were isolated, and sequence analysis revealed 57 of the clones to be novel nucleotide sequences, many containing the resistance (R)-protein nucleotide-binding site motif. A cluster analysis was performed with resistance gene analogue (RGA) nucleotide sequences isolated in this study, in addition to 99 cotton RGA nucleotide sequences already deposited in GenBank, to generate a phylogenetic tree of cotton R genes.
View Article and Find Full Text PDFWe describe a case in which regional anaesthesia for Caesarean section was initially avoided because of the presence of systemic infection. However, attempted induction of general anaesthesia resulted in failed tracheal intubation and so an epidural catheter was sited and used for the operation. Awake fibreoptic tracheal intubation was performed after surgery, when it was clear that ventilatory support on the intensive care unit would be needed.
View Article and Find Full Text PDF