Publications by authors named "Hinata Hokyo"

Article Synopsis
  • The oscillatory retinal neuron (ORN) technology facilitates in-sensor cognitive image computing without relying on external power sources.
  • Its operation hinges on photoinduced negative differential resistance (NDR) at the graphene/silicon interface, which converts optical signals into voltage oscillations, though the underlying optoelectronic mechanism of NDR is not fully understood.
  • Recent simulations reveal that the combination of band alignment and charge transfer rates of excited carriers affects NDR, paving the way for better design of ORN devices for image computing in AI applications.
View Article and Find Full Text PDF

Typical ductile materials are metals, which deform by the motion of defects like dislocations in association with non-directional metallic bonds. Unfortunately, this textbook mechanism does not operate in most inorganic semiconductors at ambient temperature, thus severely limiting the development of much-needed flexible electronic devices. We found a shear-deformation mechanism in a recently discovered ductile semiconductor, monoclinic-silver sulfide (AgS), which is defect-free, omni-directional, and preserving perfect crystallinity.

View Article and Find Full Text PDF