Despite the increasing interest in targeting stromal elements of the tumor microenvironment, we still face tremendous challenges in developing adequate therapeutics to modify the tumor stromal landscape. A major obstacle to this is our poor understanding of the phenotypic and functional heterogeneity of stromal cells in tumors. Herein, we perform an unbiased interrogation of tumor mesenchymal cells, delineating the co-existence of distinct subsets of cancer-associated fibroblasts (CAFs) in the microenvironment of murine carcinomas, each endowed with unique phenotypic features and functions.
View Article and Find Full Text PDFResistance to cancer therapies presents a significant clinical challenge. Recent studies have revealed intratumoral heterogeneity as a source of therapeutic resistance. However, it is unclear whether resistance is driven predominantly by pre-existing or de novo alterations, in part because of the resolution limits of next-generation sequencing.
View Article and Find Full Text PDFMotivation: Mate pair protocols add to the utility of paired-end sequencing by boosting the genomic distance spanned by each pair of reads, potentially allowing larger repeats to be bridged and resolved. The Illumina Nextera Mate Pair (NMP) protocol uses a circularization-based strategy that leaves behind 38-bp adapter sequences, which must be computationally removed from the data. While 'adapter trimming' is a well-studied area of bioinformatics, existing tools do not fully exploit the particular properties of NMP data and discard more data than is necessary.
View Article and Find Full Text PDFRecent studies emphasize the importance of mRNA splicing in human genetic disease, as 20-30% of all disease-causing mutations are predicted to result in mRNA splicing defects. The plasticity of the mRNA splicing reaction has made these mutations attractive candidates for the development of therapeutics. Familial dysautonomia (FD) is a severe neurodegenerative disorder, and all patients have an intronic IVS20+6T>C splice site mutation in the IKBKAP gene, which results in tissue-specific skipping of exon 20 and a corresponding reduction in ikappaB kinase complex associated protein (IKAP) levels.
View Article and Find Full Text PDFAll cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer.
View Article and Find Full Text PDFFamilial dysautonomia (FD), a devastating hereditary sensory and autonomic neuropathy, results from an intronic mutation in the IKBKAP gene that disrupts normal mRNA splicing and leads to tissue-specific reduction of IKBKAP protein (IKAP) in the nervous system. To better understand the roles of IKAP in vivo, an Ikbkap knockout mouse model was created. Results from our study show that ablating Ikbkap leads to embryonic lethality, with no homozygous Ikbkap knockout (Ikbkap(-)(/)(-)) embryos surviving beyond 12.
View Article and Find Full Text PDFDNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost.
View Article and Find Full Text PDFFamilial dysautonomia (FD) is a severe hereditary sensory and autonomic neuropathy, and all patients with FD have a splice mutation in the IKBKAP gene. The FD splice mutation results in variable, tissue-specific skipping of exon 20 in IKBKAP mRNA, which leads to reduced IKAP protein levels. The development of therapies for FD will require suitable mouse models for preclinical studies.
View Article and Find Full Text PDFMutations that affect the splicing of pre-mRNA are a major cause of human disease. Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a T to C transition at base pair 6 of IKBKAP intron 20. This mutation results in variable tissue-specific skipping of exon 20.
View Article and Find Full Text PDFSplicing mutations that lead to devastating genetic diseases are often located in nonconserved or weakly conserved sequences that normally do not affect splicing. Thus, the underlying reason for the splicing defect is not immediately obvious. An example of this phenomenon is observed in the neurodevelopmental disease familial dysautonomia (FD), which is caused by a single-base change in the 5' splice site (5'ss) of intron 20 in the IKBKAP gene (c.
View Article and Find Full Text PDFThe defective splicing of pre-mRNA is a major cause of human disease. Exon skipping is a common result of splice mutations and has been reported in a wide variety of genetic disorders, yet the underlying mechanism is poorly understood. Often, such mutations are incompletely penetrant, and low levels of normal transcript and protein are maintained.
View Article and Find Full Text PDFThe name retinitis pigmentosa (RP) describes a heterogeneous group of inherited progressive retinal dystrophies, primarily affecting the peripheral retina. Patients experience night blindness and visual field loss, often leading to complete blindness. RP can be inherited in autosomal dominant, autosomal recessive, X-linked, mitochondrial and genetically more complex modes.
View Article and Find Full Text PDFThe RP9 form of autosomal dominant retinitis pigmentosa (adRP) maps to a locus on human chromosome 7p14. We now report two different disease associated mutations in a previously unidentified human gene, the mouse orthologue of which has been characterised by its interaction with the Pim-1 oncogene. In the original linked family we identified the missense mutation H137L.
View Article and Find Full Text PDFRetinitis pigmentosa (RP), the commonest form of inherited retinal dystrophies is a clinically and genetically heterogeneous disorder. It is characterized by progressive degeneration of the peripheral retina leading to night blindness and loss of peripheral visual field. RP is inherited either in an autosomal dominant, autosomal recessive or X-linked mode.
View Article and Find Full Text PDFWe report two polymerase chain reaction (PCR)-based methods for distinguishing morphologically similar species based on amplification of a variable region of the 28S gene of ribosomal DNA. The four species we investigated are mosquitoes of the Anopheles minimus group: An. aconitus, An.
View Article and Find Full Text PDFHum Mol Genet
October 1999
Retinitis pigmentosa is a genetically heterogeneous form of retinal degeneration that affects approximately 1 in 3500 people worldwide. Recently we identified the gene responsible for the RP1 form of autosomal dominant retinitis pigmentosa (adRP) at 8q11-12 and found two different nonsense mutations in three families previously mapped to 8q. The RP1 gene is an unusually large protein, 2156 amino acids in length, but is comprised of four exons only.
View Article and Find Full Text PDF