Sub-equatorial Africa is today inhabited predominantly by Bantu-speaking groups of Western African descent who brought agriculture to the Luangwa valley in eastern Zambia ~2000 years ago. Before their arrival the area was inhabited by hunter-gatherers, who in many cases were subsequently replaced, displaced or assimilated. In Zambia, we know little about the genetic affinities of these hunter-gatherers.
View Article and Find Full Text PDFBackground: Hunter-gatherer lifestyles dominated the southern African landscape up to ~ 2000 years ago, when herding and farming groups started to arrive in the area. First, herding and livestock, likely of East African origin, appeared in southern Africa, preceding the arrival of the large-scale Bantu-speaking agro-pastoralist expansion that introduced West African-related genetic ancestry into the area. Present-day Khoekhoe-speaking Namaqua (or Nama in short) pastoralists show high proportions of East African admixture, linking the East African ancestry with Khoekhoe herders.
View Article and Find Full Text PDFThe southern African indigenous Khoe-San populations harbor the most divergent lineages of all living peoples. Exploring their genomes is key to understanding deep human history. We sequenced 25 full genomes from five Khoe-San populations, revealing many novel variants, that 25% of variants are unique to the Khoe-San, and that the Khoe-San group harbors the greatest level of diversity across the globe.
View Article and Find Full Text PDFAlthough the human Y chromosome has effectively shown utility in uncovering facets of human evolution and population histories, the ascertainment bias present in early Y-chromosome variant data sets limited the accuracy of diversity and TMRCA estimates obtained from them. The advent of next-generation sequencing, however, has removed this bias and allowed for the discovery of thousands of new variants for use in improving the Y-chromosome phylogeny and computing estimates that are more accurate. Here, we describe the high-coverage sequencing of the whole Y chromosome in a data set of 19 male Khoe-San individuals in comparison with existing whole Y-chromosome sequence data.
View Article and Find Full Text PDFThe editorial speaks to the Global Statement on Air Pollution and Health and How it may assist African countries to eliminate air pollution-related health impacts.
View Article and Find Full Text PDFBackground: Population demography and gene flow among African groups, as well as the putative archaic introgression of ancient hominins, have been poorly explored at the genome level.
Results: Here, we examine 15 African populations covering all major continental linguistic groups, ecosystems, and lifestyles within Africa through analysis of whole-genome sequence data of 21 individuals sequenced at deep coverage. We observe a remarkable correlation among genetic diversity and geographic distance, with the hunter-gatherer groups being more genetically differentiated and having larger effective population sizes throughout most modern-human history.
Objective: The latest genome-wide association studies of obesity-related traits have identified several genetic loci contributing to body composition (BC). These findings have not been robustly replicated in African populations, therefore, this study aimed to assess whether European BC-associated gene loci played a similar role in a South African black population.
Methods: A replication and fine-mapping study was performed in participants from the Birth to Twenty cohort (N = 1,926) using the Metabochip.
The Southern African Human Genome Programme is a national initiative that aspires to unlock the unique genetic character of southern African populations for a better understanding of human genetic diversity. In this pilot study the Southern African Human Genome Programme characterizes the genomes of 24 individuals (8 Coloured and 16 black southeastern Bantu-speakers) using deep whole-genome sequencing. A total of ~16 million unique variants are identified.
View Article and Find Full Text PDFSouthern Africa is consistently placed as a potential region for the evolution of We present genome sequences, up to 13x coverage, from seven ancient individuals from KwaZulu-Natal, South Africa. The remains of three Stone Age hunter-gatherers (about 2000 years old) were genetically similar to current-day southern San groups, and those of four Iron Age farmers (300 to 500 years old) were genetically similar to present-day Bantu-language speakers. We estimate that all modern-day Khoe-San groups have been influenced by 9 to 30% genetic admixture from East Africans/Eurasians.
View Article and Find Full Text PDFGenetic analyses can provide information about human evolutionary history that cannot always be gleaned from other sources. We evaluated evidence of selective pressure due to introduced infectious diseases in the genomes of two indigenous southern African San groups-the ‡Khomani who had abundant contact with other people migrating into the region and the more isolated Ju|'hoansi. We used a dual approach to test for increased selection on immune genes compared with the rest of the genome in these groups.
View Article and Find Full Text PDFSouthern Africa was likely exclusively inhabited by San hunter-gatherers before ~2000 years ago. Around that time, East African groups assimilated with local San groups and gave rise to the Khoekhoe herders. Subsequently, Bantu-speaking farmers, arriving from the north (~1800 years ago), assimilated and displaced San and Khoekhoe groups, a process that intensified with the arrival of European colonists ~350 years ago.
View Article and Find Full Text PDFThe decision of the UK House of Commons in 2015 to endorse the use of pioneering in vitro fertilisation techniques to protect future generations from the risk of mitochondrial DNA (mtDNA) disease has sparked worldwide controversy and debate. The availability of such technologies could benefit women at risk of transmitting deleterious mutations. MtDNA disease certainly occurs in South Africa (SA) in all population groups.
View Article and Find Full Text PDFThis editorial examines a number of vitally important ethical, legal and scientific concerns that have to be addressed to ensure proper and ethical implementation of direct-to-consumer whole-exome sequencing in South Africa. Individuals taking part in this endeavour must be fully informed of the positive and negative sequelae.
View Article and Find Full Text PDFWe report a study of genome-wide, dense SNP (∼ 900K) and copy number polymorphism data of indigenous southern Africans. We demonstrate the genetic contribution to southern and eastern African populations, which involved admixture between indigenous San, Niger-Congo-speaking and populations of Eurasian ancestry. This finding illustrates the need to account for stratification in genome-wide association studies, and that admixture mapping would likely be a successful approach in these populations.
View Article and Find Full Text PDFThis is a report on a workshop titled 'Ethics for genomic research across five African countries: Guidelines, experiences and challenges', University of the Witwatersrand, Johannesburg, South Africa, 10 and 11 December 2012. The workshop was hosted by the Wits-INDEPTH partnership, AWI-Gen, as part of the H3Africa Consortium.
View Article and Find Full Text PDFWhile gene flow between distantly related populations is increasingly recognized as a potentially important source of adaptive genetic variation for humans, fully characterized examples are rare. In addition, the role that natural selection for resistance to vivax malaria may have played in the extreme distribution of the protective Duffy-null allele, which is nearly completely fixed in mainland sub-Saharan Africa and absent elsewhere, is controversial. We address both these issues by investigating the evolution of the Duffy-null allele in the Malagasy, a recently admixed population with major ancestry components from both East Asia and mainland sub-Saharan Africa.
View Article and Find Full Text PDFThe search for a method that utilizes biological information to predict humans' place of origin has occupied scientists for millennia. Over the past four decades, scientists have employed genetic data in an effort to achieve this goal but with limited success. While biogeographical algorithms using next-generation sequencing data have achieved an accuracy of 700 km in Europe, they were inaccurate elsewhere.
View Article and Find Full Text PDFThe ability to digest milk into adulthood, lactase persistence (LP), as well as specific genetic variants associated with LP, is heterogeneously distributed in global populations. These variants were most likely targets of selection when some populations converted from hunter-gatherer to pastoralist or farming lifestyles. Specific LP polymorphisms are associated with particular geographic regions and populations; however, they have not been extensively studied in southern Africa.
View Article and Find Full Text PDFBackground: Previous historical, anthropological and genetic data provided overwhelming support for the Semitic origins of the Lemba, a Bantu-speaking people in southern Africa.
Objective: To revisit the question concerning genetic affinities between the Lemba and Jews.
Methods: Y-chromosome variation was examined in two Lemba groups: one from South Africa (SA) and, for the first time, a group from Zimbabwe (Remba), to re-evaluate the previously reported Jewish link.
Background: The current San and Khoe populations are remnant groups of a much larger and widely dispersed population of hunter-gatherers and pastoralists, who had exclusive occupation of southern Africa before the influx of Bantu-speakers from 2 ka (ka = kilo annum [thousand years] old/ago) and sea-borne immigrants within the last 350 years. Here we use mitochondrial DNA (mtDNA) to examine the population structure of various San and Khoe groups, including seven different Khoe-San groups (Ju/'hoansi, !Xun, /Gui+//Gana, Khwe, ≠Khomani, Nama and Karretjie People), three different Coloured groups and seven other comparative groups. MtDNA hyper variable segments I and II (HVS I and HVS II) together with selected mtDNA coding region SNPs were used to assign 538 individuals to 18 haplogroups encompassing 245 unique haplotypes.
View Article and Find Full Text PDF