Publications by authors named "Himavanth Gatla"

Introduction: Obesity, an independent risk factor for breast cancer growth and metastatic progression, is also closely intertwined with gut dysbiosis; and both obese state and dysbiosis promote each other. Enteric abundance of is strongly linked with obesity, and we recently discovered the presence of in malignant breast cancer. Given that enterotoxigenic or ETBF, which secretes toxin (BFT), has been identified as a procarcinogenic microbe in breast cancer, it is necessary to examine its impact on distant metastasis and underlying systemic and localized alterations promoting metastatic progression of breast cancer.

View Article and Find Full Text PDF

Allogeneic T cells are key immune therapeutic cells to fight cancer and other clinical indications. High T cell dose per patient and increasing patient numbers result in clinical demand for a large number of allogeneic T cells. This necessitates a manufacturing platform that can be scaled up while retaining cell quality.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is responsible for 7.3% of all cancer deaths. Even though there is a steady increase in patient survival for most cancers over the decades, the patient survival rate for pancreatic cancer remains low with current therapeutic strategies.

View Article and Find Full Text PDF

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) counteract with each other to regulate gene expression by altering chromatin structure. Aberrant HDAC activity was reported in many human diseases including wide range of cancers, viral infections, cardiovascular complications, auto-immune diseases and kidney diseases. HDAC inhibitors are small molecules designed to block the malignant activity of HDACs.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) cells express increased levels of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which promotes their proliferation and migration. Because TNBC patients are unresponsive to current targeted therapies, new therapeutic strategies are urgently needed. While proteasome inhibition by bortezomib (BZ) or carfilzomib (CZ) has been effective in treating hematological malignancies, it has been less effective in solid tumors, including TNBC, but the mechanisms are incompletely understood.

View Article and Find Full Text PDF

Although inhibitors of epigenetic regulators have been effective in the treatment of cutaneous T cell lymphoma (CTCL) and other hematopoietic malignancies, they have been less effective in solid tumors, including ovarian cancer (OC). We have previously shown that inhibition of histone deacetylase (HDAC) activity induces expression of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (CXCL8, IL-8) in OC cells, resulting in their increased survival and proliferation. Here, we show that in addition to ovarian cancer SKOV3, OVCAR3, and CAOV3 cells, HDAC inhibition induces the CXCL8 expression in HeLa cells, but not in CTCL Hut-78 cells.

View Article and Find Full Text PDF

Overexpression of the pro-angiogenic chemokine IL-8 (CXCL8) is associated with a poor prognosis in several solid tumors, including epithelial ovarian cancer (EOC). Even though histone deacetylase (HDAC) inhibition has shown remarkable antitumor activity in hematological malignancies, it has been less effective in solid tumors, including EOC. Here we report results that may explain the decreased efficiency of HDAC inhibition in EOC, based on our data demonstrating that HDAC inhibition specifically induces expression of IL-8/CXCL8 in SKOV3, CAOV3, and OVCAR3 cells.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is an energy sensor and master regulator of metabolism. AMPK functions as a fuel gauge monitoring systemic and cellular energy status. Activation of AMPK occurs when the intracellular AMP/ATP ratio increases and leads to a metabolic switch from anabolism to catabolism.

View Article and Find Full Text PDF

Ovarian cancer is associated with increased expression of the pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which induces tumor cell proliferation, angiogenesis, and metastasis. Even though bortezomib (BZ) has shown remarkable anti-tumor activity in hematological malignancies, it has been less effective in ovarian cancer; however, the mechanisms are not understood. We have recently shown that BZ unexpectedly induces the expression of IL-8 in ovarian cancer cells in vitro, by IκB kinase (IKK)-dependent mechanism.

View Article and Find Full Text PDF

The increased expression of pro-inflammatory and pro-angiogenic chemokines contributes to ovarian cancer progression through the induction of tumor cell proliferation, survival, angiogenesis, and metastasis. The substantial potential of these chemokines to facilitate the progression and metastasis of ovarian cancer underscores the need for their stringent transcriptional regulation. In this Review, we highlight the key mechanisms that regulate the transcription of pro-inflammatory chemokines in ovarian cancer cells, and that have important roles in controlling ovarian cancer progression.

View Article and Find Full Text PDF

Interleukin-8 (IL-8), originally discovered as the neutrophil chemoattractant and inducer of leukocyte-mediated inflammation, contributes to cancer progression through its induction of tumor cell proliferation, survival, and migration. IL-8 expression is increased in many types of advanced cancers, including ovarian cancer, and correlates with poor prognosis. Bortezomib (BZ) is the first FDA-approved proteasome inhibitor that has shown remarkable antitumor activity in multiple myeloma and other hematological malignancies.

View Article and Find Full Text PDF

Increased expression and cellular release of inflammatory cytokines, interleukin-8 (IL-8; CXCL8), and high mobility group box-1 (HMGB1) are associated with increased cell proliferation, angiogenesis, and metastasis during cancer progression. In prostate and ovarian cancer cells, increased levels of IL-8 and HMGB1 correlate with poor prognosis. We have recently shown that proteasome inhibition by bortezomib (BZ) specifically increases IL-8 release from metastatic prostate and ovarian cancer cells.

View Article and Find Full Text PDF

Proinflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8) contributes to ovarian cancer progression through its induction of tumor cell proliferation, survival, angiogenesis, and metastasis. Proteasome inhibition by bortezomib, which has been used as a frontline therapy in multiple myeloma, has shown only limited effectiveness in ovarian cancer and other solid tumors. However, the responsible mechanisms remain elusive.

View Article and Find Full Text PDF

Expression of the proinflammatory and proangiogenic chemokine IL-8, which is regulated at the transcriptional level by NF-κB, is constitutively increased in androgen-independent metastatic prostate cancer and correlates with poor prognosis. Inhibition of NF-κB-dependent transcription was used as an anticancer strategy for the development of the first clinically approved 26S proteasome inhibitor, bortezomib (BZ). Even though BZ has shown remarkable antitumor activity in hematological malignancies, it has been less effective in prostate cancer and other solid tumors; however, the mechanisms have not been fully understood.

View Article and Find Full Text PDF