Plane-wave electrons undergo momentum transfer as they scatter off a target in overlapping spherical waves. The transferred momentum leads to target structural information to be encoded in angle and energy differential scattering. For symmetric, periodic, or structured targets this can engender diffraction in the electron intensity both in real and momentum space.
View Article and Find Full Text PDFLight-induced energy confinement in nanoclusters via plasmon excitations influences applications in nanophotonics, photocatalysis, and the design of controlled slow electron sources. The resonant decay of these excitations through the cluster's ionization continuum provides a unique probe of the collective electronic behavior. However, the transfer of a part of this decay amplitude to the continuum of a second conjugated cluster may offer control and efficacy in sharing the energy nonlocally to instigate remote collective events.
View Article and Find Full Text PDFElectron relaxation is studied in endofullerene Mg@C_{60} after an initial localized photoexcitation in Mg by nonadiabatic molecular dynamics simulations. Two approaches to the electronic structure of the excited electronic states are used: (i) an independent particle approximation based on a density-functional theory description of molecular orbitals and (ii) a configuration-interaction description of the many-body effects. Both methods exhibit similar relaxation times, leading to an ultrafast decay and charge transfer from Mg to C_{60} within tens of femtoseconds.
View Article and Find Full Text PDFThe effects of confinement and electron correlations on the relative time delay between the 3s and 3p photoemissions of Ar confined endohedrally in C60 are investigated using the time-dependent local density approximation--a method that is also found to mostly agree with recent time delay measurements between the 3s and 3p subshells in atomic Ar. At energies in the neighborhood of 3p Cooper minimum, correlations with C60 electrons are found to induce opposite temporal effects in the emission of Ar 3p hybridized symmetrically versus that of Ar 3p hybridized antisymmetrically with C60. A recoil-type interaction model mediated by the confinement is found to best describe the phenomenon.
View Article and Find Full Text PDFConsidering an Ar atom endohedrally sequestered in C60, a phenomenal increase in the photoionization cross section of the confined atom through the dominant outer 3p channel is predicted. The effect occurs owing to a powerful dynamical coherent interchannel coupling between the atomic and the cage ionization channels which redirects the bulk of oscillator strength from the giant surface plasmon to the atomic ionization.
View Article and Find Full Text PDFWe show that isolated subfemtosecond, extreme ultraviolet (XUV) pulses can be generated via harmonic generation in argon by few-cycle infrared pulses formed through filamentation-induced self-compression in neon. Our calculations show that the time structure of the XUV pulses depends sensitively on both the amplitude and the phase modulation that are induced in the driving pulse during the self-compression process.
View Article and Find Full Text PDFThe dynamics of the photoionization of the two outermost orbitals of C(60) has been studied in the oscillatory regime from threshold to the carbon K edge. We show that geometrical properties of the fullerene electronic hull, such as its diameter and thickness, are contained in the partial photoionization cross sections by examining ratios of partial cross sections as a function of the photon wave number in the Fourier conjugated space. Evaluated in this unconventional manner photoemission data reveal directly the desired spatial information.
View Article and Find Full Text PDF