In osteoarthritis (OA), the degradation of cartilage is primarily driven by matrix metalloprotease-13 (MMP-13). Hence, the inhibition of MMP-13 has emerged as an attractive target for OA treatment. Among the various approaches that are being explored for MMP-13 regulation, blocking of the enzyme with specific binding molecules appears to be a more promising strategy for preventing cartilage degeneration.
View Article and Find Full Text PDFAdvancements in high-throughput technologies, genomics, transcriptomics, and metabolomics play an important role in obtaining biological information about living organisms. The field of computational biology and bioinformatics has experienced significant growth with the advent of high-throughput sequencing technologies and other high-throughput techniques. The resulting large amounts of data present both opportunities and challenges for data analysis.
View Article and Find Full Text PDFIn plant and animal breeding, sometimes observations are not independently distributed. There may exist a correlated relationship between the observations. In the presence of highly correlated observations, the classical premise of independence between observations is violated.
View Article and Find Full Text PDFThe extensive and indiscriminate use of antibiotics in the ongoing COVID-19 pandemic might significantly contribute to the growing number of multiple drug resistant (MDR) bacteria. With the dwindling pipeline of new and effective antibiotics, we might soon end up in a post-antibiotic era, in which even common bacterial infections would be a challenge to control. To prevent this, an antibiotic-free strategy would be highly desirable.
View Article and Find Full Text PDFAims: 1: Describe the epidemiology and determine risk factors for COVID-19 associated mucormycosis. 2: Elaborate the clinical spectrum of Rhino-Orbital-Cerebral Mucormycosis (ROCM), pattern of neuroaxis involvement and it's radiological correlates.
Methods: Observational study.
The effect of SARS-CoV-2 infection on humanity has gained worldwide attention and importance due to the rapid transmission, lack of treatment options and high mortality rate of the virus. While scientists across the world are searching for vaccines/drugs that can control the spread of the virus and/or reduce the risks associated with infection, patients infected with SARS-CoV-2 have been reported to have tissue/organ damage. With most tissues/organs having limited regenerative potential, interventions that prevent further damage or facilitate healing would be helpful.
View Article and Find Full Text PDFNitric oxide (NO) is an important inflammatory mediator involved in the development and progression of osteoarthritis (OA). Increased production of NO in the affected joints promote cartilage damage. As NO synthesis is catalysed by the inducible NO synthase (iNOS) enzyme, iNOS inhibition serves as an attractive therapeutic target to prevent NO release.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2021
Curcumin, a pleiotropic signalling molecule from Curcuma longa, is reported to be effective against multiple cancers. Despite its promising effect, curcumin had failed in clinical trials due to its low aqueous solubility, stability and poor bioavailability. While several approaches are being attempted to overcome the limitations, the improved solubility observed with curcumin-derived carbon dots appeared to be a strategy worth exploring.
View Article and Find Full Text PDFOsteoarthritis (OA) is a degenerative disease which affects a large number of individuals. Collagenases, which belong to a class of metalloproteases (MMPs), are responsible for the degradation of cartilage manifested in OA. Inhibition of the catalytic domains of these MMPs is one of the important therapeutic strategies proposed for the prevention of OA.
View Article and Find Full Text PDFBackground: The role of vascular endothelial growth factors (VEGFs) in neointimal formation has been controversial. VEGF receptor (R)-2 signaling pathway is crucial in bringing about the effects of VEGFs including vasodilatation, endothelial cell migration and proliferation. In this study we have used an established adventitial gene transfer technique, in vitro studies and a novel VEGF-E/PlGF chimera that binds specifically to VEGFR-2, to investigate the role of VEGFR-2 in neointimal formation.
View Article and Find Full Text PDFBackground: Arterial occlusive disease is often associated with diabetes mellitus and hypercholesterolaemia which may reduce angiogenic potential of several growth factors. Accordingly, the usefulness of therapeutic angiogenesis in the presence of diabetes and hypercholesterolaemia has remained unclear. We evaluated angiogenic effects of the mature form of vascular endothelial growth factor-D (VEGF-D(deltaNdeltaC)) in skeletal muscles in the presence of severe diabetes and hypercholesterolaemia.
View Article and Find Full Text PDFAtherosclerosis is a complex multifocal arterial disease involving interactions of multiple genetic and environmental factors. Advances in techniques of molecular genetics have revealed that genetic polymorphisms significantly influence susceptibility to atherosclerotic vascular diseases. A large number of candidate genes, genetic polymorphisms and susceptibility loci associated with atherosclerotic diseases have been identified in recent years and their number is rapidly increasing.
View Article and Find Full Text PDFRevascularization with vein grafts is standard surgical therapy for occlusive arterial diseases. Autologous saphenous vein grafts are important conduits for repairing blocked coronary arteries and are used in the majority of vein graft procedures. Up to 50% of saphenous vein grafts will be occluded during the first decade after surgery.
View Article and Find Full Text PDFPlaque angiogenesis may be associated with the development of unstable and vulnerable plaques. Vascular endothelial growth factors (VEGFs) are potent angiogenic factors that can affect plaque neovascularization. Our objective was to determine the effect of diabetes on atherosclerosis and on the expression of angiogenesis-related genes in atherosclerotic lesions.
View Article and Find Full Text PDFAngiogenesis is the process by which new blood vessels are formed from existing vessels. The vascular endothelial growth factors (VEGFs) are considered as key molecules in the process of angiogenesis. The VEGF family currently includes VEGF-A, -B, -C, -D, -E, -F and placenta growth factor (PlGF), that bind in a distinct pattern to three structurally related receptor tyrosine kinases, denoted VEGF receptor-1, -2, and -3.
View Article and Find Full Text PDFPlacental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family that binds specifically to VEGF receptor (VEGFR)-1. However, the mechanism of PlGF- and VEGFR-1-mediated angiogenesis has remained unclear and some in vitro studies suggest that VEGF-A/VEGFR-2 signaling may also play a role in PlGF-mediated angiogenesis. To clarify these issues we evaluated angiogenic responses in a well-characterized periadventitial angiogenesis model using adenovirus-mediated PlGF-2 (AdvPlGF-2) gene transfer.
View Article and Find Full Text PDFBackground: Gene transfer offers considerable potential for altering vessel wall physiology and intervention in vascular disease. Therefore, there is great interest in developing optimal strategies and vectors for efficient, targeted gene delivery into a vessel wall.
Methods: We studied adeno-associated viruses (AAV; 9 x 10(8) to 4 x 10(9) TU/ml) for their usefulness to transduce rabbit arteries in vivo in comparison with adenoviruses (Adv; 1 x 10(9) to 1 x 10(10) pfu/ml).
Gene therapy is a rapidly evolving field of medicine, which potentially offers new treatments for cardiovascular diseases. With the use of gene transfer methods it is possible to modify somatic cells in blood vessels and myocardium to overexpress or inhibit pathologically important proteins and achieve therapeutic effects. Prevention of restenosis after vascular interventions such as percutanous coronary angioplasty (PTCA), percutanous peripheral angioplasty (PTA) or stent implantation, prevention of venous graft failures and therapeutic angiogenesis are the major aims of experimental studies and clinical gene therapy.
View Article and Find Full Text PDFRecent discovery of new members of the vascular endothelial growth factor (VEGF) family has generated much interest as to which members may be best suited for therapeutic angiogenesis in various tissues. In this study we evaluated angiogenic responses of the different members of the VEGF family in vivo using adenoviral gene transfer. Adenoviruses (1 x 10(9) plaque-forming units [pfu]) encoding for VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-C(deltaNdeltaC) and VEGF-D(deltaNdeltaC) (deltaNdeltaC are proteolytically cleaved forms) were transferred locally to the periadventitial space of the rabbit carotid arteries using a collar technique that allows efficient local transfection of the periadventitial tissue.
View Article and Find Full Text PDF