Per- and polyfluoroalkyl substances (PFAS) are anthropogenic compounds developed for various applications; some are connected to adverse health impacts including immunosuppression and higher susceptibility to some cancers. Current PFAS remediation treatments from aqueous sources include granular activated carbon (GAC) adsorption, membrane separation, and anion-exchange resin (AER) removal. Each has specific disadvantages, hence the need for a new and efficient technology.
View Article and Find Full Text PDFEnvironmental conditions of groundwater and surface water greatly vary as a function of location. Factors such as ionic strength, water hardness, and solution pH can change the physical and chemical properties of the nanocomposites used in remediation and the pollutants of interest. In this work, magnetic nanocomposite microparticle (MNM) gels are used as sorbents for remediation of PCB 126 as model organic contaminant.
View Article and Find Full Text PDFNanomaterials (Basel)
March 2023
The widespread presence of numerous organic contaminants in water poses a threat to the ecological environment and human health. Magnetic nanocomposites exposed to an alternating magnetic field (AMF) have a unique ability for magnetically mediated energy delivery (MagMED) resulting from the embedded magnetic nanoparticles; this localized energy delivery and associated chemical and thermal effects are a potential method for removing contaminants from water. This work developed a novel magnetic nanocomposite-a polyacrylamide-based hydrogel loaded with iron oxide nanoparticles.
View Article and Find Full Text PDFTraditional chemotherapies target rapidly developing cells in the human body resulting in harsh side effects including fatigue, immune system suppression, and nausea, among others. Delivery systems to focus the active pharmaceutical ingredients (APIs) to the diseased tissue can diminish the negative side effects while improving treatment outcomes. Gold nanoparticles (AuNP) offer many unique advantages as drug delivery vehicles, including being biologically inert, easily adaptable to various shapes and sizes, able to create a strong Au-thiol bond, and able to generate heat upon the absorption of near-infrared light.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2's (SARS-CoV-2) rapid global spread has posed a significant threat to human health, and similar outbreaks could occur in the future. Developing effective virus inactivation technologies is critical to preventing and overcoming pandemics. The infection of SARS-CoV-2 depends on the binding of the spike glycoprotein (S) receptor binding domain (RBD) to the host cellular surface receptor angiotensin-converting enzyme 2 (ACE2).
View Article and Find Full Text PDFThe versatility and unique qualities of thermoresponsive polymeric systems have led to the application of these materials in a multitude of fields. One such field that can significantly benefit from the use of innovative, smart materials is environmental remediation. Of particular significance, multifunctional poly(N-isopropylacrylamide) (PNIPAAm) systems based on PNIPAAm copolymerized with various cationic comonomers have the opportunity to target and attract negatively charged pollutants such as perfluorooctanoic acid (PFOA).
View Article and Find Full Text PDFIn thyroid surgery, intra-operative neuromonitoring signals of the recurrent laryngeal nerve can be detected by surface electrodes on a tracheal tube positioned at the vocal fold level. The incidence of difficult tracheal intubation in patients undergoing thyroidectomy for nodular goitre ranges from 5.3% to 20.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
December 2022
Given their versatility and formability, polymers have proven to be a viable platform facilitating a controlled and tuned release for a variety of therapeutic agents. One growing area of polymer drug delivery is polymeric prodrugs, which covalently link active pharmaceutical ingredients to a polymeric form to enhance stability, delivery, and pharmacology. One such class of polymeric prodrugs, poly(beta amino esters) (PβAEs) can be synthesized into crosslinked, or "thermoset," networks which greatly limits their processability.
View Article and Find Full Text PDFOral drug delivery remains the most common and well tolerated method for drug administration. However, its applicability is often limited due to low drug solubility and stability. One approach to overcome the solubility and stability limitations is the use of amorphous polymeric prodrug formulations, such as poly(β-amino ester) (PBAE).
View Article and Find Full Text PDFPoly(N-isopropylacrylamide) PNIPAAm was polymerized with co-monomers containing a biphenyl moiety to create a unique thermoresponsive physically crosslinked system due to the presence of pi-pi interactions between the biphenyl moieties. The biphenyl monomers used were 2-phenylphenol monoacrylate (2PPMA) and 4-phenylphenol monoacrylate (4PPMA). These monomers were utilized to synthesize a set of polymers with biphenyl monomer (2PPMA/4PPMA) content from 2.
View Article and Find Full Text PDFMater Sci Eng B Solid State Mater Adv Technol
March 2022
Water pollution continues to be one of the greatest challenges humankind faces worldwide. Increasing population growth, fast industrialization and modernization risk the worsening of water accessibility and quality in the coming years. Nanoadsorbents have steadily gained attention as remediation technologies that can meet stringent water quality demands.
View Article and Find Full Text PDFReduction of airborne viral particles in enclosed spaces is critical in controlling pandemics. Three different hollow fiber membrane (HFM) modules were investigated for viral aerosol separation in enclosed spaces. Pore structures were characterized by scanning electron microscopy, and air transport properties were measured.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) have rapidly accumulated in the environment due to their widespread use prior to commercial discussion in the early 21st century, and their slow degradation has magnified concerns of their potential toxicity. Monitoring their distribution is, therefore, necessary to evaluate and control their impact on the health of exposed populations. This investigation evaluates the capability of a simple polymeric detection scheme for PFAS based on crosslinked, thermoresponsive poly(-isopropylacrylamide) (PNIPAM) hydrogels.
View Article and Find Full Text PDFHumans are constantly exposed to exogenous chemicals throughout their life, which can lead to a multitude of negative health impacts. Advanced materials can play a key role in preventing or mitigating these impacts through a wide variety of applications. The tunable properties of hydrogels and hydrogel nanocomposites (e.
View Article and Find Full Text PDFAs a method to combat the extensive contamination of poly- and perfluoroalkyl substances (PFAS) in water supplies, poly(-isopropylacrylamide) (PNIPAM) microgels copolymerized with 2,2,2-trifluoroethylacrylate (TFEA) represent a potential sensing tool for recognizing PFAS at dilute aqueous concentrations. The microgels exhibit exceptional temperature responsiveness, transitioning from a swollen -average diameter of 890.8 ± 19.
View Article and Find Full Text PDFBionanotechnology is an ever-expanding field as innovations in nanotechnology continue to be developed based on biological systems or to be applied to address unmet needs in biology, biomedicine, ., including various sensor and drug delivery solutions. Amidst the wide range of bionanomaterials that have been developed, stimuli responsive bionanomaterials are of particular interest and are thus emphasized within this review.
View Article and Find Full Text PDFIn this work, the development of novel magnetic nanocomposite microparticles (MNMs) via free radical polymerization for their application in the remediation of contaminated water is presented. Acrylated plant-based polyphenols, curcumin multiacrylate (CMA) and quercetin multiacrylate (QMA), were incorporated as functional monomers to create high affinity binding sites for the capture of polychlorinated biphenyls (PCBs), as a model pollutant. The MNMs were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, dynamic light scattering, and UV-visible spectroscopy.
View Article and Find Full Text PDFThe versatility and applicability of thermoresponsive polymeric systems have led to great interest and a multitude of publications. Of particular significance, multifunctional poly(-isopropylacrylamide) (PNIPAAm) systems based on PNIPAAm copolymerized with various functional comonomers or based on PNIPAAm combined with nanomaterials exhibiting unique properties. These multifunctional PNIPAAm systems have revolutionized several biomedical fields such as controlled drug delivery, tissue engineering, self-healing materials, and beyond (e.
View Article and Find Full Text PDFDue to mounting evidence of the negative health effects of persistent perfluoroalkyl acids (PFAAs) with long (i.e., >C) tails, there is a need for convenient systems capable of sensing these contaminants at dilute aqueous concentrations.
View Article and Find Full Text PDFMonomers containing biphenyl moieties were employed to create two sets of covalently crosslinked polymers that displayed noncovalent interactions in their 3-dimensional network. The biphenyls (precursors) used were 2-phenylphenol, 4-phenylphenol and 4,4'-dihydroxybiphenyl, and their acrylated forms were synthesized and named as 2-phenylphenolmonoacrylate (2PPMA), 4-phenylphenolmonoacrylate (4PPMA), and 4,4'-dihydroxybiphenyldiacrylate (44BDA), respectively. These were characterized by differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) to confirm the successful acrylation reaction.
View Article and Find Full Text PDFTranslational animal models for oral mucositis (OM) are necessary to simulate and assess the bioclinical effects and response in humans. These models should simulate high levels of radiation exposure that leads to oxidative stress and inflammatory-initiated tissue changes. Hamster models have been extensively studied to observe pathological effects of radiation exposure and help in the development of effective treatments.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1093/rb/rbz002.][This corrects the article DOI: 10.
View Article and Find Full Text PDFIn this work, we developed novel core-shell nanoparticle systems with magnetic core and polymer shell via atom transfer radical polymerization for use as high affinity nanoadsorbents for organic contaminants in water and wastewater treatment. Polyphenolic-based moieties, curcumin multiacrylate (CMA) and quercetin multiacrylate (QMA), were incorporated into poly(ethylene glycol) (PEG) based polymeric shells to create high affinity binding sites for the capture of polychlorinated biphenyls (PCBs) as a model pollutant. The resulting magnetic nanoparticles (MNPs) were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), and UV-visible spectroscopy.
View Article and Find Full Text PDFDespite the promise of its therapeutic benefits, curcumin as a free molecule has failed to demonstrate significant clinical success. Arguably, its inherently poor stability and rapid clearance is a significant reason for these negative outcomes. The incorporation of curcumin into the backbone of a crosslinked hydrogel that utilizes poly(beta-amino ester) (PBAE) chemistry can provide a tunable protective network with the ability to release at a controlled rate while improving its therapeutic potential.
View Article and Find Full Text PDFDisulfides are used extensively in reversible cross-linking because of the ease of reduction into click-reactive thiols. However, the free-radical scavenging properties upon reduction are often under-considered. The free thiols produced upon reduction of this disulfide material mimic the cellular reducing chemistry (glutathione) that serves as a buffer against acute oxidative stress.
View Article and Find Full Text PDF