We describe a novel and noninvasive, microscopy-based method for visualizing the structure and dynamics of microbial biofilms, individual fluorescent microbial cells, and inorganic colloids within a model porous medium. Biofilms growing in flow cells packed with granules of an amorphous fluoropolymer could be visualized as a consequence of refractive index matching between the solid fluoropolymer grains and the aqueous immersion medium. In conjunction with the capabilities of confocal microscopy for nondestructive optical sectioning, the use of amorphous fluoropolymers as a solid matrix permits observation of organisms and dynamic processes to a depth of 2 to 3 mm, whereas sediment biofilms growing in sand-filled flow cells can only be visualized in the region adjacent to the flow cell wall.
View Article and Find Full Text PDFA sensitive layer system of amorphous Teflon AF on silver has been coated on a glass substrate. With a monochromatic light source the reflectivity of the layer system as a function of the angle of incidence exhibits the surface-plasmon resonance as well as a set of leaky-mode resonances. These optical resonance phenomena are sensitive to small refractive-index changes that may be induced by diffusion of particles into the Teflon AF layer.
View Article and Find Full Text PDF