Publications by authors named "Hilma Peusha"

A segment of Triticum militinae chromosome 7G harbors a gene(s) conferring powdery mildew resistance which is effective at both the seedling and the adult plant stages when transferred into bread wheat (T. aestivum). The introgressed segment replaces a piece of wheat chromosome arm 4AL.

View Article and Find Full Text PDF

Introgression of several genomic loci from tetraploid Triticum militinae into bread wheat cv. Tähti has increased resistance of introgression line 8.1 to powdery mildew in seedlings and adult plants.

View Article and Find Full Text PDF

In the progeny of a cross between the common wheat cultivar Tähti and Triticum militinae, a member of the timopheevii group of tetraploid wheats, several hybrid lines were selected that are characterized by improved seedling and adult plant resistance (APR) to powdery mildew. An F2 single-seed descendant mapping population segregating for seedling resistance and APR to powdery mildew was analysed for the identification of quantitative trait loci (QTL). The main QTL responsible for APR was detected on the long arm of chromosome 4A tightly linked to the Xgwm160 locus on a T.

View Article and Find Full Text PDF

Genetic studies using monosomic and hybridological analyses had confirmed that resistance of a common wheat line k-15560 to powdery mildew in seedling stage was conditioned by one dominant gene located on chromosome 7B, and resistance in adult stage was controlled by two dominant genes. Cytological analysis of meiosis in the F1 monosomic hybrids has revealed reciprocal translocation involving chromosomes 2A/7A. In the F1 monosomic hybrids genes, causing a decrease in pairing were found on chromosomes 3B and 4D, and genes enhancing pairing--on chromosomes 2A and 3A.

View Article and Find Full Text PDF