Inclusion of defined quantities of the two major surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA), could benefit seasonal influenza vaccines. Recombinant HA and NA multimeric proteins derived from three influenza serotypes, H1N1, H3N2, and type B, are surface displayed on nanoliposomes co-loaded with immunostimulatory adjuvants, generating "hexaplex" particles that are used to immunize mice. Protective immune responses to hexaplex liposomes involve functional antibody elicitation against each included antigen, comparable to vaccination with monovalent antigen particles.
View Article and Find Full Text PDFDental caries (cavities) is the most prevalent disease worldwide; however, current detection methods suffer from issues associated with sensitivity, subjective interpretations, and false positive identification of carious lesions. Therefore, there is a great need for the development of more sensitive, noninvasive imaging methods. The 30 nm core@shell NaYF; Yb20%, Er2%@NaYF upconversion nanoparticles (UCNPs), exhibiting strong upconversion emission from erbium upon excitation at 975 nm, were used in the imaging of locations of demineralized enamel and oral biofilm formation for the detection of dental caries.
View Article and Find Full Text PDFFront Bioeng Biotechnol
May 2023
A nanoparticle composed of a poly (lactic-co-glycolic acid) (PLGA) core and a chitosan (CS) shell with surface-adsorbed 1,3 β-glucan (β-glucan) was synthesized. The exposure response of CS-PLGA nanoparticles (0.1 mg/mL) with surface-bound β-glucan at 0, 5, 10, 15, 20, or 25 ng or free β-glucan at 5, 10, 15, 20, or 25 ng/mL in macrophage and was investigated.
View Article and Find Full Text PDFOptoelectronic science and 2D nanomaterial technologies are currently at the forefront of multidisciplinary research and have numerous applications in electronics and photonics. The unique energy and optically induced interfacial electron transfer in these nanomaterials, enabled by their relative band alignment characteristics, can provide important therapeutic modalities for healthcare. Given that nano-heterostructures can facilitate photoinduced electron-hole separation and enhance generation of reactive oxygen species (ROS), 2D nano-heterostructure-based photosensitizers can provide a major advancement in photodynamic therapy (PDT), to overcome the current limitations in hypoxic tumor microenvironments.
View Article and Find Full Text PDFThere is an increased need of drugs with multifunctional properties for visualization of β-amyloid (Aβ) plaques for early diagnosis and treatment of Alzheimer's disease (AD). Curcumin (Cur) is a potent antiamyloid, antiinflammatory, and antiapoptotic natural product that has been used to treat several neurodegenerative diseases, including AD. Curcumin can reduce amyloid burden, rescue neuronal damage, and restore normal cognitive and sensory motor functions in AD.
View Article and Find Full Text PDFA nanoformulation composed of curdlan, a linear polysaccharide of 1,3-β-linked d-glucose units, hydrogen bonded to poly(γ -glutamic acid) (PGA), was developed to stimulate macrophage. Curdlan/PGA nanoparticles (C-NP) are formulated by physically blending curdlan (0.2 mg mL in 0.
View Article and Find Full Text PDFThere is widespread interest in developing agents to modify tumor hypoxia in head and neck squamous cell carcinomas (HNSCC). Here, we report on the synthesis, characterization, and potential utility of ultra-small NaYF:Nd/NaGdF nanocrystals coated with manganese dioxide (usNP-MnO) for spatiotemporal modulation of hypoxia in HNSCC. Using a dual modality imaging approach, we first visualized the release of Mn using T1-weighted magnetic resonance imaging (MRI) and modulation of oxygen saturation (%sO) using photoacoustic imaging (PAI) in vascular channel phantoms.
View Article and Find Full Text PDFWhen combined with immunotherapy, image-guided targeted delivery of chemotherapeutic agents is a promising direction for combination cancer theranostics, but this approach has so far produced only limited success due to a lack of molecular targets on the cell surface and low therapeutic index of conventional chemotherapy drugs. Here, we demonstrate a synergistic strategy of combination immuno/chemotherapy in conditions of dual regioselective targeting, implying vectoring of two distinct binding sites of a single oncomarker (here, HER2) with theranostic compounds having a different mechanism of action. We use: (i) PLGA nanoformulation, loaded with an imaging diagnostic fluorescent dye (Nile Red) and a chemotherapeutic drug (doxorubicin), and functionalized with affibody Z (8 kDa); (ii) bifunctional genetically engineered DARP-LoPE (42 kDa) immunotoxin comprising of a low-immunogenic modification of therapeutic exotoxin A (LoPE) and a scaffold targeting protein, DARPin9.
View Article and Find Full Text PDFIn this work, a multifunctional hierarchical nanoformulation composed of biodegradable chitosan (CS) coated poly (lactic-co-glycolic acid) (PLGA) nanocarriers loaded with docetaxel (Doc) and interleukin-8 (IL-8) small interfering RNA (siRNA) electrostatically bound to upconversion nanoparticles (UCNPs), is developed to treat castration-resistant prostate cancer (CRPC). This theranostic nanoformulation facilitates simultaneous delivery of chemotherapy and gene therapy, as well as a bimodal optical and magnetic resonance imaging agent that could enable image-guided combination therapy. Poly-d-lysine coated NaYF; Yb20%, Er2%@NaYF; Gd50% core@shell UCNPs are effective siRNA transfection agents, and Er doping provides upconversion imaging capabilities, while Gd doping enables magnetic resonance contrast enhancement.
View Article and Find Full Text PDFWe introduce the use of laser ablation to develop a multi-drug encapsulating theranostic nanoformulation for HIV-1 antiretroviral therapy. Laser ablated nanoformulations of ritonavir, atazanavir, and curcumin, a natural product that has both optical imaging and pharmacologic properties, were produced in an aqueous media containing Pluronic® F127. Cellular uptake was confirmed with the curcumin fluorescence signal localized in the cytoplasm.
View Article and Find Full Text PDFPurpose: An in vitro dynamic pharmacokinetic (PK) cell culture system was developed to more precisely simulate physiologic nanoparticle/drug exposure.
Methods: A dynamic PK cell culture system was developed to more closely reflect physiologic nanoparticle/drug concentrations that are changing with time. Macrophages were cultured in standard static and PK cell culture systems with rifampin (RIF; 5 μg/ml) or β-glucan, chitosan coated, poly(lactic-co-glycolic) acid (GLU-CS-PLGA) nanoparticles (RIF equivalent 5 μg/ml) for 6 h.
Historically, volatile anesthetics have demonstrated interesting interactions with both the innate and adaptive immune systems. This review organizes these interactions into four phases: recognition, recruitment, response, and resolution. These phases represent a range of proinflammatory, inflammatory, and innate and adaptive immune regulatory responses.
View Article and Find Full Text PDFIt is well established that overproduction and accumulation of the β-amyloid (Aβ) peptide 1-42 (Aβ(1-42)) is a trigger of the pathological cascade in Alzheimer's disease (AD) that manifests as cognitive impairment. Ginsenoside Rg3 is an important constituent of ginseng, plays an essential role in memory and improved cognition, and is known to produce antioxidant effects via the reduction of free radicals. Therefore, ginsenoside Rg3 may be a promising candidate as a neuroprotective agent for the treatment of AD.
View Article and Find Full Text PDFAcid pneumonitis is a major cause of sterile acute lung injury (ALI) in humans. Acid pneumonitis spans the clinical spectrum from asymptomatic to acute respiratory distress syndrome (ARDS), characterized by neutrophilic alveolitis, and injury to both alveolar epithelium and vascular endothelium. Clinically, ARDS is defined by acute onset of hypoxemia, bilateral patchy pulmonary infiltrates and non-cardiogenic pulmonary edema.
View Article and Find Full Text PDFWe introduce a hybrid organic-inorganic system consisting of epitaxial NaYF:Yb/X@NaYbF@NaYF:Nd (X = null, Er, Ho, Tm, or Pr) core/shell/shell (CSS) nanocrystal with organic dye, indocyanine green (ICG) on the nanocrystal surface. This system is able to produce a set of narrow band emissions with a large Stokes-shift (>200 nm) in the second biological window of optical transparency (NIR-II, 1000-1700 nm), by directional energy transfer from light-harvesting surface ICG, via lanthanide ions in the shells, to the emitter X in the core. Surface ICG not only increases the NIR-II emission intensity of inorganic CSS nanocrystals by ∼4-fold but also provides a broadly excitable spectral range (700-860 nm) that facilitates their use in bioapplications.
View Article and Find Full Text PDFPoly(lactic-co-glycolic acid) (PLGA) chitosan (CS) coated nanoparticles (NPs) were loaded with two antiretrovirals (ARVs) either lamivudine (LMV) which is hydrophilic or nevirapine (NVP) which is hydrophobic or both LMV and NVP. These ARVs are of importance in resource-limited settings, where they are commonly used in human immunodeficiency virus (HIV-1) treatment due to affordability and accessibility. NPs prepared by a water-oil-water emulsion and reduced pressure solvent evaporation technique were determined to have a positive zeta potential, a capsule-like morphology, and an average hydrodynamic diameter of 240 nm.
View Article and Find Full Text PDFObjective: To reduce the amount of the antiretroviral (ARV) nevirapine necessary to achieve therapeutic concentrations using macrophage targeted nanoparticles.
Methods: Core-shell nanoparticles were prepared from FDA approved, biodegradable and biocompatible polymers, with poly(lactic-co-glycolic) acid (PLGA) as the core and chitosan (CS) as the shell using a water/oil/water method. Nevirapine was encapsulated in the core of the nanoparticles.
A novel stabilized aggregated nanogel particle (SANP) drug delivery system was prepared for injectable passive lung targeting. Gel nanoparticles (GNPs) were synthesized by irreversibly cross-linking 8 Arm PEG thiol with 1,6-hexane-bis-vinylsulfone (HBVS) in phosphate buffer (PB, pH 7.4) containing 0.
View Article and Find Full Text PDFThe current study examines the passive pulmonary targeting efficacy and retention of 6μm polystyrene (PS) microparticles (MPs) covalently modified with different surface groups [amine (A-), carboxyl (C-) and sulfate (S-)] or single (PEG(1)-) and double (PEG(2)-) layers of α,ω-diamino poly(ethylene glycol) attached to C-MPs. The ζ-potential of A-MPs (-44.0mV), C-MPs (-54.
View Article and Find Full Text PDFThe objective of the present study was to identify a camptothecin (CPT) prodrug with optimal release and cytotoxicity properties for immobilization on a passively targeted microparticle delivery system. A series of alpha-amino acid ester prodrugs of CPT were synthesized, characterized, and evaluated. Four CPT prodrugs were synthesized with increasing aliphatic chain length (glycine (Gly) (2a), alanine (Ala) (2b), aminobutyric acid (Abu) (2c), and norvaline (Nva) (2d)).
View Article and Find Full Text PDFThe relationship between microparticle (MP) size and lung targeting efficiency, intra-lung distribution and retention time was systematically studied after intravenous administration of rigid fluorescent polystyrene MPs of various sizes (2, 3, 6 and 10 microm) to Sprague Dawley rats. Total fluorescence was assessed and it was found that 2 microm and 3 microm MPs readily passed through the lung to the liver and spleen while 10 microm MPs were completely entrapped in the lung for the one-week duration of the study. Approximately 84% of 6 microm MPs that were initially entrapped in the lung were cleared over the next 2 days and 15% were cleared over the remaining 5 days.
View Article and Find Full Text PDFLarge (>6 microm) rigid microparticles (MPs) become passively entrapped within the lungs after intravenous (i.v.) injection making them an attractive and highly efficient alternative to inhalation for pulmonary delivery.
View Article and Find Full Text PDF