Since their original proposal in 2008, a number of broadly distributed flavoprotein systems catalyzing electron bifurcation have been identified that play key roles in the bioenergetics of anaerobic bacteria and archaea. While the overall thermodynamics of flavin-based electron bifurcation are now quite well-understood, the same cannot be said of their kinetic behavior. The present account represents a summary of results obtained with several electron-electron bifurcating systems, shamelessly focusing on work done in the authors' laboratory.
View Article and Find Full Text PDFThe molybdenum-containing CO dehydrogenase and the formate dehydrogenases catalyze important interconversions of one-carbon compounds, the former oxidizing CO to CO, and the latter the reversible interconversion of CO and formate. Methodologies to study these two enzymes are discussed.
View Article and Find Full Text PDFThe molybdenum- and tungsten-containing formate dehydrogenases from a variety of microorganisms catalyze the reversible interconversion of formate and CO; several, in fact, function as CO reductases in the reverse direction under physiological conditions. CO reduction catalyzed by these enzymes occurs under mild temperature and pressure rather than the elevated conditions required for current industrial processes. Given the contemporary importance of remediation of atmospheric CO to address global warming, there has been considerable interest in the application of these enzymes in bioreactors.
View Article and Find Full Text PDFWe have investigated the kinetic behavior of the electron-bifurcating crotonyl-CoA-dependent NADH: ferredoxin oxidoreductase EtfAB:bcd from Megasphaera elsdenii. The overall behavior of the complex in both the reductive and the oxidative half-reactions is consistent with that previously determined for the individual EtfAB and bcd components. This includes an uncrossing of the half-potentials of the bifurcating flavin of the EtfAB component in the course of ferredoxin-reducing catalysis, ionization of the bcd flavin semiquinone and the appearance of a charge transfer complex upon binding of the high potential acceptor crotonyl-CoA.
View Article and Find Full Text PDFThe biopharmaceutical industry continually seeks advancements in the commercial manufacturing of therapeutic proteins, where mammalian cell culture plays a pivotal role. The current work presents a novel data-driven predictive modeling application designed to enhance the efficiency and predictability of cell culture processes in biotherapeutic production. The capability of the cloud-based digital data science application, developed using open-source tools, is demonstrated with respect to predicting bioreactor potency from at-line process parameters over a 5-day horizon.
View Article and Find Full Text PDFPrevious studies suggest that uric acid or reactive oxygen species, products of xanthine oxidoreductase (XOR), may associate with neurodegenerative diseases. However, neither relationship has ever been firmly established. Here, we analyzed human brain samples, obtained under protocols approved by research ethics committees, and found no expression of XOR and only low levels of uric acid in various regions of the brain.
View Article and Find Full Text PDFWe have investigated the kinetics of NAD-dependent NADPH:ferredoxin oxidoreductase (NfnI), a bifurcating transhydrogenase that takes two electron pairs from NADPH to reduce two ferredoxins and one NAD through successive bifurcation events. NADPH reduction takes place at the bifurcating FAD of NfnI's large subunit, with high-potential electrons transferred to the [2Fe-2S] cluster and S-FADH of the small subunit, ultimately on to NAD; low-potential electrons are transferred to two [4Fe-4S] clusters of the large subunit and on to ferredoxin. Reduction of NfnI by NADPH goes to completion only at higher pH, with a limiting k of 36 ± 1.
View Article and Find Full Text PDFElectron bifurcation is an energy-conservation mechanism in which a single enzyme couples an exergonic reaction with an endergonic one. Heterotetrameric EtfABCX drives the reduction of low-potential ferredoxin (°' ∼ -450 mV) by oxidation of the midpotential NADH (°' = -320 mV) by simultaneously coupling the reaction to reduction of the high-potential menaquinone (°' = -74 mV). Electron bifurcation occurs at the NADH-oxidizing bifurcating-flavin adenine dinucleotide (BF-FAD) in EtfA, which has extremely crossed half-potentials and passes the first, high-potential electron to an electron-transferring FAD and via two iron-sulfur clusters eventually to menaquinone.
View Article and Find Full Text PDFElectron bifurcation (BF) is an evolutionarily ancient energy coupling mechanism in anaerobes, whose associated enzymatic machinery remains enigmatic. In BF-flavoenzymes, a chemically high-potential electron forms in a thermodynamically favorable fashion by simultaneously dropping the potential of a second electron before its donation to physiological acceptors. The cryo-EM and spectroscopic analyses of the BF-enzyme Fix/EtfABCX from suggest that the BF-site contains a special flavin-adenine dinucleotide and, upon its reduction with NADH, a low-potential electron transfers to ferredoxin and a high-potential electron reduces menaquinone.
View Article and Find Full Text PDFThe oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from is capable of catalyzing both formate oxidation to CO and the reverse reaction (CO reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex.
View Article and Find Full Text PDFThe bacterial molybdenum (Mo)-containing formate dehydrogenase (FdsDABG) from is a soluble NAD-dependent enzyme belonging to the DMSO reductase family. The holoenzyme is complex and possesses nine redox-active cofactors including a bis(molybdopterin guanine dinucleotide) (bis-MGD) active site, seven iron-sulfur clusters, and 1 equiv of flavin mononucleotide (FMN). FdsDABG catalyzes the two-electron oxidation of HCOO (formate) to CO and reversibly reduces CO to HCOO under physiological conditions close to its thermodynamic redox potential.
View Article and Find Full Text PDFXanthine oxidoreductase is a metalloenzyme that catalyzes the final steps in purine metabolism by converting hypoxanthine to xanthine and then uric acid. Allopurinol, an analog of hypoxanthine, is widely used as an antigout drug, as xanthine oxidoreductase-mediated metabolism of allopurinol to oxypurinol leads to oxypurinol rotation in the enzyme active site and reduction of the molybdenum Mo(VI) active center to Mo(IV), inhibiting subsequent urate production. However, when oxypurinol is administered directly to a mouse model of hyperuricemia, it yields a weaker urate-lowering effect than allopurinol.
View Article and Find Full Text PDFElectron-bifurcating flavoproteins catalyze the tightly coupled reduction of high- and low-potential acceptors using a median-potential electron donor, and are invariably complex systems with multiple redox-active centers in two or more subunits. Methods are described that permit, in favorable cases, the deconvolution of spectral changes associated with reduction of specific centers, making it possible to dissect the overall process of electron bifurcation into individual, discrete steps.
View Article and Find Full Text PDFWe have investigated the equilibrium properties and rapid-reaction kinetics of the isolated butyryl-CoA dehydrogenase (bcd) component of the electron-bifurcating crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase (EtfAB-bcd) from Megasphaera elsdenii. We find that a neutral FADH• semiquinone accumulates transiently during both reduction with sodium dithionite and with NADH in the presence of catalytic concentrations of EtfAB. In both cases full reduction of bcd to the hydroquinone is eventually observed, but the accumulation of FADH• indicates that a substantial portion of reduction occurs in sequential one-electron processes rather than a single two-electron event.
View Article and Find Full Text PDFA personal perspective is provided regarding the work in several laboratories, including the author's, that has established the reaction mechanism of xanthine oxidase and related enzymes.
View Article and Find Full Text PDFThe conversion of xanthine dehydrogenase (XDH) to xanthine oxidase (XO) occurs only in mammalian species. In fresh bovine milk, the enzyme exists predominantly as the oxidase form, in contrast to various normal organs where it is found primarily as the dehydrogenase: the mechanism of conversion to the oxidase in milk remains obscure. A systematic search for the essential factors for conversion from XDH to XO has been performed within fresh bovine milk using the highly purified dehydrogenase form after removal endogenous oxidase form by fractionation analysis.
View Article and Find Full Text PDFRecent research has demonstrated that hybrid linear flow channel reactors (HLFCRs) can desulfurize tannery effluent via sulfate reduction and concurrent oxidation of sulfide to elemental sulfur. The reactors can be used to pre-treat tannery effluent to improve the efficiency of downstream anaerobic digestion and recover sulfur. This study was conducted to gain insight into the bacterial communities in HLFCRs operated in series and identify structure-function relationships.
View Article and Find Full Text PDFSemi-passive bioremediation is a promising strategy to mitigate persistent low volume mine-impacted wastewater containing high sulphate concentrations. Building on the proof of concept demonstration of the hybrid linear flow channel reactor (LFCR), capable of simultaneous biological sulphate reduction and partial sulphide oxidation with elemental sulphur recovery, the impact of key operating parameters, such as temperature, on process performance is critical to real-world application. Temperature fluctuates seasonally and across the diurnal cycle, impacting biological sulphate reduction (BSR) and partial sulphide oxidation.
View Article and Find Full Text PDFA concise review is provided of the contributions that various spectroscopic methods have made to our understanding of the physical and electronic structures of mononuclear molybdenum enzymes. Contributions to our understanding of the structure and function of each of the major families of these enzymes is considered, providing a perspective on how spectroscopy has impacted the field.
View Article and Find Full Text PDFA description is provided of the contributions made to our understanding of molybdenum-containing enzymes through the application of electron paramagnetic resonance spectroscopy and related methods, by way of illustrating how these can be applied to better understand enzyme structure and function. An emphasis is placed on the use of EPR to identify both the coordination environment of the molybdenum coordination sphere as well as the structures of paramagnetic intermediates observed transiently in the course of reaction that have led to the elucidation of reaction mechanism.
View Article and Find Full Text PDFThe EtfAB components of two bifurcating flavoprotein systems, the crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase from the bacterium Megasphaera elsdenii and the menaquinone-dependent NADH:ferredoxin oxidoreductase from the archaeon Pyrobaculum aerophilum, have been investigated. With both proteins, we find that removal of the electron-transferring flavin adenine dinucleotide (FAD) moiety from both proteins results in an uncrossing of the reduction potentials of the remaining bifurcating FAD; this significantly stabilizes the otherwise very unstable semiquinone state, which accumulates over the course of reductive titrations with sodium dithionite. Furthermore, reduction of both EtfABs depleted of their electron-transferring FAD by NADH was monophasic with a hyperbolic dependence of reaction rate on the concentration of NADH.
View Article and Find Full Text PDFThe nature of air-inactivation of the formate dehydrogenase FdsDABG from Cupriavidus necator has been investigated. It is found that superoxide, generated in the reaction of reduced enzyme with oxygen, is responsible for the loss of activity and that superoxide dismutase protects the enzyme from air-inactivation. Inhibition appears to be due to the reaction of superoxide with the catalytically essential MoS group of the enzyme's molybdenum center in such a way that generates sulfite.
View Article and Find Full Text PDFWe have undertaken a spectral deconvolution of the three FADs of EtfAB/bcd to the spectral changes seen in the course of reduction, including the spectrally distinct anionic and neutral semiquinone states of electron-transferring and bcd flavins. We also demonstrate that, unlike similar systems, no charge-transfer complex is observed on titration of the reduced M. elsdenii EtfAB with NAD.
View Article and Find Full Text PDFFormate oxidation to carbon dioxide is a key reaction in one-carbon compound metabolism, and its reverse reaction represents the first step in carbon assimilation in the acetogenic and methanogenic branches of many anaerobic organisms. The molybdenum-containing dehydrogenase FdsABG is a soluble NAD-dependent formate dehydrogenase and a member of the NADH dehydrogenase superfamily. Here, we present the first structure of the FdsBG subcomplex of the cytosolic FdsABG formate dehydrogenase from the hydrogen-oxidizing bacterium H16 both with and without bound NADH.
View Article and Find Full Text PDFCO dehydrogenase (CODH) from the Gram-negative bacterium Oligotropha carboxidovorans is a complex metalloenzyme from the xanthine oxidase family of molybdenum-containing enzymes, bearing a unique binuclear Mo-S-Cu active site in addition to two [2Fe-2S] clusters (FeSI and FeSII) and one equivalent of FAD. CODH catalyzes the oxidation of CO to CO with the concomitant introduction of reducing equivalents into the quinone pool, thus enabling the organism to utilize CO as sole source of both carbon and energy. Using a variety of EPR monitored redox titrations and spectroelectrochemistry, we report the redox potentials of CO dehydrogenase at pH 7.
View Article and Find Full Text PDF