Publications by authors named "Hillary St John"

Receptor activator of NF-κB ligand (RANKL) is a TNF-like cytokine which mediates diverse physiological functions including bone remodeling and immune regulation. RANKL has been identified in atherosclerotic lesions; however, its role in atherosclerotic plaque development remains elusive. An enhancer located 75 kb upstream of the murine Rankl gene's transcription start site designated D5 is important for its calciotropic hormone- and cytokine-mediated expression.

View Article and Find Full Text PDF

Epidemiological and clinical data suggest adverse cardiovascular outcomes with respect to vitamin D deficiency. Here, we explored the effects of vitamin D in atherosclerotic plaque calcification in vivo by utilizing vitamin D receptor (Vdr)-deficient mice in an Apoe background. Animals were fed a high-fat diet (HFD) for either 12 or 18 weeks and then examined for atherosclerotic plaque development.

View Article and Find Full Text PDF

Insight into mechanisms that link the actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to the regulation of gene expression has evolved extensively since the initial discovery of a nuclear protein known as the vitamin D receptor (VDR). Perhaps most important was the molecular cloning of this receptor which enabled its inclusion within the nuclear receptor gene family and further studies of both its structure and regulatory function. Current studies are now refocused on the vitamin D hormone's action at the genome, where VDR together with other transcription factors coordinates the recruitment of chromatin active coregulatory complexes that participate directly in the modification of gene output.

View Article and Find Full Text PDF

Transcribed from the SOST gene, sclerostin is an osteocyte-derived negative regulator of bone formation that inhibits osteoblastogenesis via antagonism of the Wnt pathway. Sclerostin is a promising therapeutic target for low bone mass diseases and neutralizing antibody therapies that target sclerostin are in development. Diverse stimuli regulate SOST including the vitamin D hormone, forskolin (Fsk), bone morphogenic protein 2 (BMP-2), oncostatin M (OSM), dexamethasone (Dex), and transforming growth factor (TGFβ).

View Article and Find Full Text PDF

Receptor activator of nuclear factor-κB ligand (RANKL) is a tumor necrosis factor (TNF)-like cytokine that is necessary for osteoclast formation and survival. Elevated RANKL synthesis is associated with both increased osteoclast number and bone resorption. Earlier studies identified an enhancer 76 kb upstream of the Tnfsf11 transcriptional start site (TSS) termed RL-D5 or the distal control region (DCR) that modulates RANKL expression in response to PTH, 1,25(OH)2D3,, and an array of cytokines.

View Article and Find Full Text PDF

Genomic annotation of unique and combinatorial epigenetic modifications along with transcription factor occupancy is having a profound impact on our understanding of the genome. These studies have led to a better appreciation of the dynamic nature of the epigenetic and transcription factor binding components that reveal overarching principles of the genome as well as tissue specificity. In this minireview, we discuss the presence and potential functions of several of these features across the genome in osteoblast lineage cells.

View Article and Find Full Text PDF

Although localized to the mineralized matrix of bone, osteocytes are able to respond to systemic factors such as the calciotropic hormones 1,25(OH)2D3 and PTH. In the present studies, we examined the transcriptomic response to PTH in an osteocyte cell model and found that this hormone regulated an extensive panel of genes. Surprisingly, PTH uniquely modulated two cohorts of genes, one that was expressed and associated with the osteoblast to osteocyte transition and the other a cohort that was expressed only in the mature osteocyte.

View Article and Find Full Text PDF

Receptor activator of NF-κB ligand (RANKL) is a TNFα-like cytokine that is produced by a diverse set of lineage-specific cells and is involved in a wide variety of physiological processes that include skeletal remodeling, lymph node organogenesis, mammary gland development, and thermal regulation. Consistent with these diverse functions, control of RANKL expression is accomplished in a cell-specific fashion via a set of at least 10 regulatory enhancers that are located up to 170 kb upstream of the gene's transcriptional start site. Here we examined the in vivo consequence of introducing a contiguous DNA segment containing these components into a genetically deleted RANKL null mouse strain.

View Article and Find Full Text PDF

Osteocytes are derived from osteoblast lineage cells that become progressively embedded in mineralized bone. Development of the osteocytogenic cell line IDG-SW3 has enabled a temporal and mechanistic investigation of this process. Through RNA-sequencing analyses, we show that although substantial changes in gene expression occur during the osteoblast to osteocyte transition, the majority of the transcriptome remains qualitatively osteoblast like.

View Article and Find Full Text PDF