Early indicators of metastatic cancer response to therapy are important for evaluating new drugs and stopping ineffective treatment. The RECIST guidelines based on repeat cancer imaging are widely adopted in clinical trials, are used to identify active regimens that may change practice, and contribute to regulatory approvals. However, these criteria do not provide insight before 6 to 12 weeks of treatment and typically require that patients have measurable disease.
View Article and Find Full Text PDFClinical trials supporting oncology drug approvals frequently underrepresent diverse racial and ethnic populations. Recent policies have focused on ensuring premarket clinical trials are more inclusive and representative of racial and ethnic diversity in the general U.S.
View Article and Find Full Text PDFCirculating tumor DNA (ctDNA) holds promise as a biomarker for predicting clinical responses to therapy in solid tumors, and multiple ctDNA assays are in development. However, the heterogeneity in ctDNA levels prior to treatment (baseline) across different cancer types and stages and across ctDNA assays has not been widely studied. Friends of Cancer Research formed a collaboration across multiple commercial ctDNA assay developers to assess baseline ctDNA levels across five cancer types in early- and late-stage disease.
View Article and Find Full Text PDFBackground: Significant advancements have been made in the field of cellular therapy as anti-cancer treatments, with the approval of chimeric antigen receptor (CAR)-T cell therapies and the development of other genetically engineered cellular therapies. CAR-T cell therapies have demonstrated remarkable clinical outcomes in various hematological malignancies, establishing their potential to change the current cancer treatment paradigm. Due to the increasing importance of genetically engineered cellular therapies in the oncology treatment landscape, implementing strategies to expedite development and evidence generation for the next generation of cellular therapy products can have a positive impact on patients.
View Article and Find Full Text PDFThe FDA's Oncology Center of Excellence's (OCE) launch of Project Optimus signals increased focus on dose optimization approaches in oncology drug development, particularly toward optimization in the premarket setting. Although sponsors continue to adapt premarket study designs and approaches to align with FDA's expectations for dose optimization, including consideration of the optimal dosage(s), there are still instances where questions remain at the time of approval about whether the approved doses or schedules are optimal. In these cases, FDA can exercise regulatory flexibility by issuing postmarketing requirements (PMR) and avoid delaying patient access to promising therapies.
View Article and Find Full Text PDF