Complex crystal structures are composed of multiple local environments, and how this type of order emerges spontaneously during crystal growth has yet to be fully understood. We study crystal growth across various structures and along different crystallization pathways, using self-assembly simulations of identical particles that interact via multiwell isotropic pair potentials. We apply an unsupervised machine learning method to features from bond-orientational order metrics to identify different local motifs present during a given structure's crystallization process.
View Article and Find Full Text PDFParticles interacting via isotropic, multiwell pair potentials have been shown to self-assemble into a range of crystal structures, yet how the characteristics of the underlying interaction potential give rise to the resultant structure remains largely unknown. We have thus developed a functional form for the interaction potential in which all features can be tuned independently. We perform continuous parameter space searches by systematically changing pairs of parameters, controlling the various features of the interaction potential.
View Article and Find Full Text PDFCoordination numbers and geometries form a theoretical framework for understanding and predicting materials properties. Algorithms to determine coordination numbers automatically are increasingly used for machine learning (ML) and automatic structural analysis. In this work, we introduce MaterialsCoord, a benchmark suite containing 56 experimentally derived crystal structures (spanning elements, binaries, and ternary compounds) and their corresponding coordination environments as described in the research literature.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins.
View Article and Find Full Text PDF