Odontocetes are breath-hold divers with a suite of physiological, anatomical, and behavioral adaptations that are highly derived and vastly different from those of their terrestrial counterparts. Because of these adaptations for diving, odontocetes were originally thought to be exempt from the harms of nitrogen gas embolism while diving. However, recent studies have shown that these mammals may alter their dive behavior in response to anthropogenic sound, leading to the potential for nitrogen supersaturation and bubble formation which may cause decompression sickness in the central nervous system (CNS).
View Article and Find Full Text PDFThe cetacean vertebral canal houses the spinal cord and arterial supply to and venous drainage from the entire central nervous system (CNS). Thus, unlike terrestrial mammals, the cetacean spinal cord lies within a highly vascularized space. We compared spinal cord size and vascular volumes within the vertebral canal across a sample of shallow and deep diving odontocetes.
View Article and Find Full Text PDFMarine mammals are exposed to O-limitation and increased N gas concentrations as they dive to exploit habitat and food resources. The lipid-rich tissues (blubber, acoustic, neural) are of particular concern as N is five times more soluble in lipid than in blood or muscle, creating body compartments that can become N saturated, possibly leading to gas emboli upon surfacing. We characterized lipids in the neural tissues of marine mammals to determine whether they have similar lipid profiles compared to terrestrial mammals.
View Article and Find Full Text PDFLipids are biomolecules present in all living organisms that, apart from their physiological functions, can be involved in different pathologies. One of these pathologies is fat embolism, which has been described histologically in the lung of cetaceans in association with ship strikes and with gas and fat embolic syndrome. To assess pathological lung lipid composition, previous knowledge of healthy lung tissue lipid composition is essential; however, these studies are extremely scarce in cetaceans.
View Article and Find Full Text PDFUnderstanding how increases in water temperature may affect winter dormancy period duration and overwinter survival are important for the effective conservation and management of estuarine species in the face of a warming climate. In this study, we determined the length of the overwintering period and the probability of overwinter survival of blue crab (Callinectes sapidus), an ecologically and economically important estuarine crustacean. Overwintering period length and probability of overwinter survival were determined using projected water temperatures up to the year 2100, derived from a harmonic model that utilized air temperatures from multi-model ensemble of regional-scale climate projections.
View Article and Find Full Text PDFResource allocation to reproduction is a primary physiological concern for individuals, and can vary with age, environment, or a combination of both factors. In this study we quantified the impact of environment and individual age on the reproductive output of female oysters Crassostrea virginica. We determined the relative fecundity, egg total lipid content, and overall and omega-3/omega-6 (ω3/ω6) fatty acid signatures (FAS) of eggs spawned by female oysters over a 2-year period (n = 32 and n = 64).
View Article and Find Full Text PDF