Purpose: Prostate-specific membrane antigen (PSMA) continues to be the hallmark biomarker for prostate cancer as it is expressed on nearly all prostatic tumors. In addition, increased PSMA expression correlates with castration resistance and progression to the metastatic stage of the disease. Recently, we combined both an albumin-binding motif and an irreversible PSMA inhibitor to develop the novel PSMA-targeted radiotherapeutic agent, CTT1403.
View Article and Find Full Text PDFIbuprofen, a nonsteroidal anti-inflammatory drug, and nitric oxide (NO) donors have been reported to reduce the severity of muscular dystrophies in mice associated with the absence of dystrophin or -sarcoglycan, but their effects on mice that are dystrophic due to the absence of dysferlin have not been examined. We have tested ibuprofen, as well as isosorbide dinitrate (ISDN), a NO donor, to learn whether used alone or together they protect dysferlin-null muscle in A/J mice from large strain injury (LSI) induced by a series of high strain lengthening contractions. Mice were maintained on chow containing ibuprofen and ISDN for 4 weeks.
View Article and Find Full Text PDFDysferlinopathies comprise a family of disorders caused by mutations in the dysferlin (DYSF) gene, leading to a progressive dystrophy characterized by chronic muscle fiber loss, fat replacement, and fibrosis. To correct the underlying histopathology and function, expression of full-length DYSF is required. Dual adeno-associated virus vectors have been developed, defined by a region of homology, to serve as a substrate for reconstitution of the full 6.
View Article and Find Full Text PDFBackground: Mycobacterium tuberculosis infects one third of the world's population and causes >8 million cases of tuberculosis annually. New vaccines are necessary to control the spread of tuberculosis. T cells, interferon γ (IFN-γ), and tumor necrosis factor (TNF) are necessary to control M.
View Article and Find Full Text PDFThe 2013 Dysferlin Conference, sponsored and organized by the Jain Foundation, was held from April 3-6, 2013 in Arlington, VA. Participants included 34 researcher speakers, 5 dysferlinopathy patients and all 8 members of the Jain Foundation team. Dysferlinopathy is a rare disease that typically robs patients of mobility during their second or third decade of life.
View Article and Find Full Text PDFGlucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) is a synthetic adjuvant TLR4 agonist that promotes potent poly-functional T(H)1 responses. Different TLR4 agonists may preferentially signal via MyD88 or TIR-domain-containing adapter inducing IFN-beta (TRIF) to exert adjuvant effects; however, the contribution of MyD88 and TRIF signaling to the induction of polyclonal T(H)1 responses by TLR4 agonist adjuvants has not been studied in vivo. To determine whether GLA-SE preferentially signals through MyD88 or TRIF, we evaluated the immune response against a candidate tuberculosis (TB) vaccine Ag following immunization of mice lacking either signaling adapter compared with that of wild-type mice.
View Article and Find Full Text PDFBackground: Recent advances in rational adjuvant design and antigen selection have enabled a new generation of vaccines with potential to treat and prevent infectious disease. The aim of this study was to assess whether therapeutic immunization could impact the course of Mycobacterium tuberculosis infection with use of a candidate tuberculosis vaccine antigen, ID93, formulated in a synthetic nanoemulsion adjuvant, GLA-SE, administered in combination with existing first-line chemotherapeutics rifampicin and isoniazid.
Methods: We used a mouse model of fatal tuberculosis and the established cynomolgus monkey model to design an immuno-chemotherapeutic strategy to increase long-term survival and reduce bacterial burden, compared with standard antibiotic chemotherapy alone.
Successful vaccine development against HIV will likely require the induction of strong, long-lasting humoral and cellular immune responses in both the systemic and mucosal compartments. Based on the known immunological linkage between the upper-respiratory and urogenital tracts, we explored the potential of nasal adjuvants to boost immunization for the induction of vaginal and systemic immune responses to gp140. Mice were immunized intranasally with HIV gp140 together with micellar and emulsion formulations of a synthetic TLR4 agonist, Glucopyranosyl Lipid Adjuvant (GLA) and responses were compared to R848, a TLR7/8 agonist, or chitosan, a non TLR adjuvant.
View Article and Find Full Text PDFTuberculosis is a major health concern. Non-living tuberculosis (TB) vaccine candidates may not only be safer than the current vaccine (BCG) but could also be used to boost BCG to enhance or elongate protection. No subunit vaccines, however, are currently available for TB.
View Article and Find Full Text PDFInnate immune responses to vaccine adjuvants based on lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, are driven by Toll-like receptor (TLR) 4 and adaptor proteins including MyD88 and TRIF, leading to the production of inflammatory cytokines, type I interferons, and chemokines. We report here on the characterization of a synthetic hexaacylated lipid A derivative, denoted as glucopyranosyl lipid adjuvant (GLA). We assessed the effects of GLA on murine and human dendritic cells (DC) by combining microarray, mRNA and protein multiplex assays and flow cytometry analyses.
View Article and Find Full Text PDFOur improved understanding of how innate immune responses can be initiated and how they can shape adaptive B- and T-cell responses is having a significant impact on vaccine development by directing the development of defined adjuvants. Experience with first generation vaccines, as well as rapid advances in developing defined vaccines containing Toll-like receptor ligands (TLRLs), indicate that an expanded number of safe and effective vaccines containing such molecules will be available in the future. In this review, we outline current knowledge regarding TLRs, detailing the different cell types that express TLRs, the various signaling pathways TLRs utilize, and the currently known TLRLs.
View Article and Find Full Text PDFDespite the widespread use of the childhood vaccine against tuberculosis (TB), Mycobacterium bovis bacillus Calmette-Guérin (BCG), the disease remains a serious global health problem. A successful vaccine against TB that replaces or boosts BCG would include antigens that induce or recall the appropriate T cell responses. Four Mycobacterium tuberculosis (Mtb) antigens--including members of the virulence factor families PE/PPE and EsX or antigens associated with latency--were produced as a single recombinant fusion protein (ID93).
View Article and Find Full Text PDFFoxp3+ T regulatory cells are required to prevent autoimmune disease, but also prevent clearance of some chronic infections. While natural T regulatory cells are produced in the thymus, TGF-beta1 signaling combined with T-cell receptor signaling induces the expression of Foxp3 in CD4+ T cells in the periphery. We found that ICAM-1-/- mice have fewer T regulatory cells in the periphery than WT controls, due to a role for ICAM-1 in induction of Foxp3 expression in response to TGF-beta1.
View Article and Find Full Text PDF