The cyclodepsipeptide FR900359 (FR) and its analogs are able to selectively inhibit the class of G proteins by blocking GDP/GTP exchange. The inhibitor binding site of G has been characterized by X-ray crystallography, and various binding and functional studies have determined binding kinetics and mode of inhibition. Here we investigate isotope-labeled FR bound to the membrane-anchored G protein heterotrimer by solid-state nuclear magnetic resonance (ssNMR) and in solution by liquid-state NMR.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating guanine nucleotide exchange in the Gα subunit. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G-protein complex. By monitoring the transitions of the stimulatory G protein in complex with the β-adrenergic receptor at short sequential time points after GTP addition, we identified the conformational trajectory underlying G-protein activation and functional dissociation from the receptor.
View Article and Find Full Text PDFHere we describe the cryo-electron microscopy structure of the human histamine 2 receptor (HR) in an active conformation with bound histamine and in complex with G heterotrimeric protein at an overall resolution of 3.4 Å. The complex was generated by cotranslational insertion of the receptor into preformed nanodisc membranes using cell-free synthesis in E.
View Article and Find Full Text PDFVirtual combinatorial libraries are prevalent in drug discovery due to improvements in the prediction of synthetic reactions that can be performed. This has gone hand in hand with the development of virtual screening capabilities to effectively screen the large chemical spaces spanned by exhaustive enumeration of reaction products. In this study, we generated a small-molecule dipeptide mimic library to target proteins binding small peptides.
View Article and Find Full Text PDFThe Northwest Tailings Containment Area at the inactive Giant Mine (Canada) contains a complex mixture of arsenic-containing substances, including flotation tailings (84.8 wt%; with 0.4 wt% residual S), roaster calcine wastes (14.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2023
Receptor activity-modifying proteins (RAMPs) modulate the activity of many Family B GPCRs. We show that RAMP2 directly interacts with the glucagon receptor (GCGR), a Family B GPCR responsible for blood sugar homeostasis, and broadly inhibits receptor-induced downstream signaling. HDX-MS experiments demonstrate that RAMP2 enhances local flexibility in select locations in and near the receptor extracellular domain (ECD) and in the 6 transmembrane helix, whereas smFRET experiments show that this ECD disorder results in the inhibition of active and intermediate states of the intracellular surface.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) activate heterotrimeric G proteins by stimulating the exchange of guanine nucleotide in the Gα subunit. To visualize this mechanism, we developed a time-resolved cryo-EM approach that examines the progression of ensembles of pre-steady-state intermediates of a GPCR-G protein complex. Using variability analysis to monitor the transitions of the stimulatory Gs protein in complex with the β -adrenergic receptor (β AR) at short sequential time points after GTP addition, we identified the conformational trajectory underlying G protein activation and functional dissociation from the receptor.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) play critical roles in human physiology and are one of the prime targets for marketed drugs. While traditional drug discovery programs have focused on the development of ligands targeting the binding site of endogenous ligands (orthosteric site), allosteric modulators offer new avenues for the regulation of GPCR function with potential therapeutic benefits. Recent advances in the structure determination of GPCRs bound to different types of allosteric modulators have led to the identification of multiple allosteric sites and significantly enhanced our understanding of how allosteric ligands interact with receptors.
View Article and Find Full Text PDFCell-free expression enables direct cotranslational insertion of G protein coupled receptors (GPCRs) and other membrane proteins into the defined membrane environments of nanodiscs. This technique avoids GPCR contacts with detergents and allows rapid identification of lipid effects on GPCR function as well as fast screening of receptor derivatives. Critical steps of conventional GPCR preparation from cellular membranes followed by detergent-based reconstitution into nanodisc membranes are thus eliminated.
View Article and Find Full Text PDFThe melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4R-Gs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-α-MSH and setmelanotide, with 2.9 Å and 2.
View Article and Find Full Text PDFImpaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) play critical roles in the regulation of human physiology in response to a wide array of different extracellular stimuli and thus represent one of the largest groups of therapeutic drug targets. Recent advances in the structural characterization of GPCRs in different conformations and in complex with G proteins and arrestins have provided important insights into the mechanism and function of GPCRs. However, in order to truly understand the molecular basis of the functional versatility of GPCRs, the structural snapshots obtained by X-ray crystallography or cryo-EM need to be complimented with information about the conformational dynamics of receptors and their signaling complexes.
View Article and Find Full Text PDFThe β adrenergic receptor (βAR) is an archetypal G protein coupled receptor (GPCR). One structural signature of GPCR activation is a large-scale movement (ca. 6 to 14 Å) of transmembrane helix 6 (TM6) to a conformation which binds and activates a cognate G protein.
View Article and Find Full Text PDFFamily B heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) play important roles in carbohydrate metabolism. Recent structures of family B GPCR-G protein complexes reveal a disruption in the α-helix of transmembrane segment 6 (TM6) not observed in family A GPCRs. To investigate the functional impact of this structural difference, we compared the structure and function of the glucagon receptor (GCGR; family B) with the β adrenergic receptor (βAR; family A).
View Article and Find Full Text PDFMany chaperones promote nascent polypeptide folding followed by substrate release through ATP-dependent conformational changes. Here we show cryoEM structures of Gα subunit folding intermediates in complex with full-length Ric-8A, a unique chaperone-client system in which substrate release is facilitated by guanine nucleotide binding to the client G protein. The structures of Ric-8A-Gα and Ric-8A-Gα complexes reveal that the chaperone employs its extended C-terminal region to cradle the Ras-like domain of Gα, positioning the Ras core in contact with the Ric-8A core while engaging its switch2 nucleotide binding region.
View Article and Find Full Text PDFNeurotensin receptor 1 (NTSR1) is a G-protein-coupled receptor (GPCR) that engages multiple subtypes of G protein, and is involved in the regulation of blood pressure, body temperature, weight and the response to pain. Here we present structures of human NTSR1 in complex with the agonist JMV449 and the heterotrimeric G protein, at a resolution of 3 Å. We identify two conformations: a canonical-state complex that is similar to recently reported GPCR-G complexes (in which the nucleotide-binding pocket adopts more flexible conformations that may facilitate nucleotide exchange), and a non-canonical state in which the G protein is rotated by about 45 degrees relative to the receptor and exhibits a more rigid nucleotide-binding pocket.
View Article and Find Full Text PDFThe β adrenergic receptor (βAR) signals through both G and G in cardiac myocytes, and the G pathway counteracts the G pathway. However, G coupling is much less efficient than G coupling in most cell-based and biochemical assays, making it difficult to study βAR-G interactions. Here we investigate the role of phospholipid composition on G and G coupling.
View Article and Find Full Text PDFThe crystal structure of the β2-adrenergic receptor (β2AR) bound to the G protein adenylyl cyclase stimulatory G protein (Gs) captured the complex in a nucleotide-free state (β2AR-Gs). Unfortunately, the β2AR-Gs complex does not provide a clear explanation for G protein coupling specificity. Evidence from several sources suggests the existence of a transient complex between the β2AR and GDP-bound Gs protein (β2AR-Gs) that may represent an intermediate on the way to the formation of β2AR-Gs and may contribute to coupling specificity.
View Article and Find Full Text PDFThe activation of G proteins by G protein-coupled receptors (GPCRs) underlies the majority of transmembrane signaling by hormones and neurotransmitters. Recent structures of GPCR-G protein complexes obtained by crystallography and cryoelectron microscopy (cryo-EM) reveal similar interactions between GPCRs and the alpha subunit of different G protein isoforms. While some G protein subtype-specific differences are observed, there is no clear structural explanation for G protein subtype-selectivity.
View Article and Find Full Text PDFSecondary transporters exist as monomers, dimers or higher state oligomers. The significance of the oligomeric state is only partially understood. Here, the significance of the trimeric state of the L-carnitine/γ-butyrobetaine antiporter CaiT of Escherichia coli was investigated.
View Article and Find Full Text PDFCannabis elicits its mood-enhancing and analgesic effects through the cannabinoid receptor 1 (CB1), a G protein-coupled receptor (GPCR) that signals primarily through the adenylyl cyclase-inhibiting heterotrimeric G protein G. Activation of CB1-G signaling pathways holds potential for treating a number of neurological disorders and is thus crucial to understand the mechanism of G activation by CB1. Here, we present the structure of the CB1-G signaling complex bound to the highly potent agonist MDMB-Fubinaca (FUB), a recently emerged illicit synthetic cannabinoid infused in street drugs that have been associated with numerous overdoses and fatalities.
View Article and Find Full Text PDF"Biased" G protein-coupled receptor (GPCR) agonists preferentially activate pathways mediated by G proteins or β-arrestins. Here, we use double electron-electron resonance spectroscopy to probe the changes that ligands induce in the conformational distribution of the angiotensin II type I receptor. Monitoring distances between 10 pairs of nitroxide labels distributed across the intracellular regions enabled mapping of four underlying sets of conformations.
View Article and Find Full Text PDFUnlabelled: Since the 1960s, hormonal contraceptives have become the most commonly used method of pregnancy prevention in the United States and the world. Oral contraceptives are used by a large percentage of women, including Christian women. There are known health risks to women demonstrated in research published since Pope Paul VI's prophetic encyclical in 1968.
View Article and Find Full Text PDF