Publications by authors named "Hildur Palsdottir"

Outer Hair Cells (OHCs) in the mammalian cochlea display a unique type of voltage-induced mechanical movement termed electromotility, which amplifies auditory signals and contributes to the sensitivity and frequency selectivity of mammalian hearing. Electromotility occurs in the OHC lateral wall, but it is not fully understood how the supramolecular architecture of the lateral wall enables this unique form of cellular motility. Employing electron tomography of high-pressure frozen and freeze-substituted OHCs, we visualized the 3D structure and organization of the membrane and cytoskeletal components of the OHC lateral wall.

View Article and Find Full Text PDF

The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growth-arrested acini.

View Article and Find Full Text PDF

Normal mammary morphogenesis involves transitions between simple and multilayered epithelial organizations. We used electron microscopy and molecular markers to determine whether intercellular junctions and apico-basal polarity were maintained in the multilayered epithelium. We found that multilayered elongating ducts had polarized apical and basal tissue surfaces both in three-dimensional culture and in vivo.

View Article and Find Full Text PDF

Despite the fact that most bacteria grow in biofilms in natural and pathogenic ecosystems, very little is known about the ultrastructure of their component cells or about the details of their community architecture. We used high-pressure freezing and freeze-substitution to minimize the artifacts of chemical fixation, sample aggregation, and sample extraction. As a further innovation we have, for the first time in biofilm research, used electron tomography and three-dimensional (3D) visualization to better resolve the macromolecular 3D ultrastructure of a biofilm.

View Article and Find Full Text PDF

Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone.

View Article and Find Full Text PDF

The cytochrome bc (1) complex is a fundamental component of the energy conversion machinery of respiratory and photosynthetic electron transfer chains. The multi-subunit membrane protein complex couples electron transfer from hydroquinone to cytochrome c to the translocation of protons across the membrane, thereby substantially contributing to the proton motive force that is used for ATP synthesis. Considerable progress has been made with structural and functional studies towards complete elucidation of the Q cycle mechanism, which was originally proposed by Mitchell 30 years ago.

View Article and Find Full Text PDF

In higher plants, cellulose is synthesized at the plasma membrane by the cellulose synthase (CESA) complex. The catalytic core of the complex is believed to be composed of three types of CESA subunits. Indirect evidence suggests that the complex associated with primary wall cellulose deposition consists of CESA1, -3, and -6 in Arabidopsis thaliana.

View Article and Find Full Text PDF

Cytochrome bc(1) is a major component of biological energy conversion that exploits an energetically favourable redox reaction to generate a transmembrane proton gradient. Since the mechanistic details of the coupling of redox and protonation reactions in the active sites are largely unresolved, we have identified residues that undergo redox-linked protonation state changes. Structure-based Poisson-Boltzmann/Monte Carlo titration calculations have been performed for completely reduced and completely oxidised cytochrome bc(1).

View Article and Find Full Text PDF

This review describes the recent knowledge about tightly bound lipids in membrane protein structures and deduces general principles of the binding interactions. Bound lipids are grouped in annular, nonannular, and integral protein lipids. The importance of lipid binding for vertical positioning and tight integration of proteins in the membrane, for assembly and stabilization of oligomeric and multisubunit complexes, for supercomplexes, as well as their functional roles are pointed out.

View Article and Find Full Text PDF

In this study a combined electrochemical and FTIR spectroscopic approach was applied to monitor the binding of stigmatellin, a Q(o) site inhibitor of the cytochrome bc(1) complex from Saccharomyces cerevisiae. Natural stigmatellin A induced clear shifts in the redox-induced FTIR difference spectra. For data interpretation a stigmatellin derivative (UST) with the conjugated trienes replaced by an aliphatic tail was synthesized, and the carbonyl group shown in crystal structures to interact with His181, the [2Fe-2S] ligand of the Rieske, was specifically (13)C labeled.

View Article and Find Full Text PDF

Atovaquone is a substituted 2-hydroxynaphthoquinone that is used therapeutically to treat Plasmodium falciparum malaria, Pneumocystis carinii pneumonia, and Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting the cytochrome bc1 complex. We have examined the interaction of atovaquone with the bc1 complex isolated from Saccharomyces cerevisiae, a surrogate, nonpathogenic fungus.

View Article and Find Full Text PDF

The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur.

View Article and Find Full Text PDF

Bifurcated electron transfer during ubiquinol oxidation is the key reaction of cytochrome bc1 complex catalysis. Binding of the competitive inhibitor 5-n-heptyl-6-hydroxy-4,7-dioxobenzothiazole to the Qo site of the cytochrome bc1 complex from Saccharomyces cerevisiae was analyzed by x-ray crystallography. This alkylhydroxydioxobenzothiazole is bound in its ionized form as evident from the crystal structure and confirmed by spectroscopic analysis, consistent with a measured pKa = 6.

View Article and Find Full Text PDF

Aging of the human skin is a complex process that consists of chronological and extrinsic aging, the latter caused mainly by exposure to ultraviolet radiation (photoaging). Here we present studies in which we have used proteomic profiling technologies and two-dimensional (2D) PAGE database resources to identify proteins whose expression is deregulated in the epidermis of the elderly. Fresh punch biopsies from the forearm of 20 pairs of young and old donors (21-30 and 75-92 years old, respectively) were dissected to yield an epidermal fraction that consisted mainly of differentiated cells.

View Article and Find Full Text PDF

Proteomics and immunohistochemistry were used to reveal tumor heterogeneity among urothelial papillomas (UPs) with the long term goal of predicting their biological potential in terms of outcome. First, we identified proteins that were deregulated in invasive fresh lesions as compared with normal urothelium, and thereafter we immunostained UPs with a panel of antibodies against some of the markers. Twenty-two major proteins showing variations of 2-fold or more in at least one-third of the invasive lesions were selected.

View Article and Find Full Text PDF