Serine/threonine (S/T) protein kinases are crucial components of diverse signaling pathways in eukaryotes, including the model filamentous fungus Neurospora crassa. In order to assess the importance of S/T kinases to Neurospora biology, we embarked on a global analysis of 86 S/T kinase genes in Neurospora. We were able to isolate viable mutants for 77 of the 86 kinase genes.
View Article and Find Full Text PDFThe model filamentous fungus Neurospora crassa has been the focus of functional genomics studies for the past several years. A high-throughput gene knockout procedure has been developed and used to generate mutants for more than two-thirds of the ∼10,000 annotated N. crassa genes.
View Article and Find Full Text PDFThe availability of complete genome sequences for a number of biologically important fungi has become an important resource for fungal research communities. However, the functions of many open reading frames (ORFs) identified through annotation of whole genome sequences have yet to be determined. The disruption of ORFs is a practical method for loss-of-function gene analyses in fungi that are amenable to transformation.
View Article and Find Full Text PDFTemperature compensation of circadian clocks is an unsolved problem with relevance to the general phenomenon of biological compensation. We identify casein kinase 2 (CK2) as a key regulator of temperature compensation of the Neurospora clock by determining that two long-standing clock mutants, chrono and period-3, displaying distinctive alterations in compensation encode the beta1 and alpha subunits of CK2, respectively. Reducing the dose of these subunits, particularly beta1, significantly alters temperature compensation without altering the enzyme's Q(10).
View Article and Find Full Text PDFStrategies for promoting high-efficiency homologous gene replacement have been developed and adopted for many filamentous fungal species. The next generation of analysis requires the ability to manipulate gene expression and to tag genes expressed from their endogenous loci. Here we present a suite of molecular tools that provide versatile solutions for fungal high-throughput functional genomics studies based on locus-specific modification of any target gene.
View Article and Find Full Text PDFThe large (l) and small (s) isoforms of FREQUENCY (FRQ) are elements of interconnected feedback loops of the Neurospora circadian clock. The expression ratio of l-FRQ vs. s-FRQ is regulated by thermosensitive splicing of an intron containing the initiation codon for l-FRQ.
View Article and Find Full Text PDFA consortium of investigators is engaged in a functional genomics project centered on the filamentous fungus Neurospora, with an eye to opening up the functional genomic analysis of all the filamentous fungi. The overall goal of the four interdependent projects in this effort is to accomplish functional genomics, annotation, and expression analyses of Neurospora crassa, a filamentous fungus that is an established model for the assemblage of over 250,000 species of non yeast fungi. Building from the completely sequenced 43-Mb Neurospora genome, Project 1 is pursuing the systematic disruption of genes through targeted gene replacements, phenotypic analysis of mutant strains, and their distribution to the scientific community at large.
View Article and Find Full Text PDFThe low rate of homologous recombination exhibited by wild-type strains of filamentous fungi has hindered development of high-throughput gene knockout procedures for this group of organisms. In this study, we describe a method for rapidly creating knockout mutants in which we make use of yeast recombinational cloning, Neurospora mutant strains deficient in nonhomologous end-joining DNA repair, custom-written software tools, and robotics. To illustrate our approach, we have created strains bearing deletions of 103 Neurospora genes encoding transcription factors.
View Article and Find Full Text PDFThe expression of FREQUENCY, a central component of the circadian clock in Neurospora crassa, shows daily cycles that are exquisitely sensitive to the environment. Two forms of FRQ that differ in length by 99 amino acids, LFRQ and SFRQ, are synthesized from alternative initiation codons and the change in their ratio as a function of temperature contributes to robust rhythmicity across a range of temperatures. We have found frq expression to be surprisingly complex, despite our earlier prediction of a simple transcription unit based on limited cDNA sequencing.
View Article and Find Full Text PDFIn Neurosporacrassa the FRQ/WC feedback loop has been shown to be central to the function of the circadian clock. Similar to other eukaryotic systems it is based on a transcription-translation PAS heterodimer type feedback. FRQ levels cycle with a period identical to that of the Neurospora circadian cycle and its expression is rapidly induced by light.
View Article and Find Full Text PDF