Publications by authors named "Hilden S"

Angiotensin (ANG) II is now recognized as a powerful direct controller of Na+ reabsorption in the proximal convoluted tubule, a property that predominantly reflects stimulation of the transepithelial NaHCO3 flux. Numerous studies have established that this effect of ANG II represents stimulation of the apical Na+/H+ exchanger, but a single microperfusion study has also suggested direct stimulation of the basolateral Na(+)-HCO3- cotransporter. We have carried out studies in basolateral membrane vesicles from rabbit renal cortex to examine directly whether ANG II exerts an independent effect on the Na(+)-HCO3- cotransporter.

View Article and Find Full Text PDF

Endothelin-1 (ET-1) is the most potent endogenous vasoconstrictor identified to date, raising the strong possibility of its involvement in the pathogenesis of systemic hypertension. Whether ET-1 exerts a direct stimulating effect on sodium reabsorption in the renal proximal convoluted tubule, the dominant locus of sodium reabsorption in the nephron, is currently unknown. Such an effect would suggest yet another mechanism by which ET-1 might mediate systemic hypertension.

View Article and Find Full Text PDF

The vacuolar H+ ATPase is inhibited by N-ethylmaleimide (NEM), a sulfhydryl compound, suggesting the involvement of a sulfhydryl group in this transport process. We have examined the effects of several sulfhydryl-containing compounds on the vacuolar H+. ATPase of rabbit renal cortical endosomes.

View Article and Find Full Text PDF

Previous studies have demonstrated a Na(+)-dependent decrease in the ATP-generated acidification of endosomes and have attributed it to the presence of either a Na(+)-H+ exchanger or a Na(+)-K(+)-adenosinetriphosphatase (ATPase) in parallel with the vacuolar H(+)-ATPase. In the present study we have examined the possibility that both of these two Na+ transporters might be present in endosome-enriched microsomes isolated from rabbit renal cortex. After the establishment of a stable pH gradient by ATP in this preparation, addition of Na+ induced a decrease in the pH gradient.

View Article and Find Full Text PDF

Renal brush border membrane vesicles (BBMV) of the dog possess at least two ATPase activities. In the present study, we have examined the effect of pH, ions, and inhibitors on the activity of ATPase in BBMV. Two different sets of conditions were identified that produced stimulation of ATPase activity.

View Article and Find Full Text PDF

We have examined the effect of second messengers on ATP-driven H+ transport in an H+ ATPase-bearing endosomal fraction isolated from rabbit renal cortex. cAMP (0.1 mM) had no effect on H+ transport.

View Article and Find Full Text PDF

We have examined the activity and kinetic characteristics of the Na+-H+ exchanger in renal cortical brush-border membrane vesicles (BBMV) prepared from rabbits adapted to chronic hypocapnia in order to address whether this transporter might contribute to the suppressed proximal bicarbonate reabsorption characteristic of this disorder. Chronic hypocapnia was induced by exposing animals to 9% O2 for a 5-day period. In comparison with paired, contemporaneous controls, an average delta PaCO2 of 13 mmHg and an average delta [HCO3-] of 7.

View Article and Find Full Text PDF

Two methods are reported for renal membrane preparation from the dog kidney cortex. One method is a simultaneous preparation of brush-border (BBMV) and basolateral (BLMV) membranes. Using readily available laboratory equipment, differential centrifugation produced a supernatant which was treated with Mg2+.

View Article and Find Full Text PDF

An endosomal fraction isolated from rabbit renal cortex by a novel, fast, and simple procedure was enriched in ATP-dependent H+ pumping that was oligomycin insensitive but was inhibited by dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide (NEM), Zn2+, Hg2+, diethylstilbestrol, mersalyl, and 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. No substantial Na+-H+ exchange was detected. Electrogenicity of the pump was demonstrated using [14C]-SCN-.

View Article and Find Full Text PDF

The uptake of D-glucose by renal brush border membrane vesicles was studied in the absence of Na+. Uptake of the sugar was membrane potential dependent (inside negative), inhibited by phlorizin, sugar and stereospecific, accelerated by exchange diffusion, saturable, and temperature dependent. The binding of phlorizin in the absence of Na+ was also increased by a membrane potential (inside negative).

View Article and Find Full Text PDF

Vesicles containing a purified shark rectal gland (sodium + potassium)-activated adenosine triphosphatase-(NaK ATPase) were prepared by dialyzing for 2 days egg lecithin, cholate, and the NaK ATPase purified from the rectal gland of Squalus acanthias. These vesicles were capable of both Na+ and K+ transport. Studies of K+ transport were made by measuring the ATP-stimulated transport outward of 42K+ or 86Rb+.

View Article and Find Full Text PDF