Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple-drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
November 2022
This study describes the structure of DNA polymerase I from Thermus phage G20c, termed PolI_G20c. This is the first structure of a DNA polymerase originating from a group of related thermophilic bacteriophages infecting Thermus thermophilus, including phages G20c, TSP4, P74-26, P23-45 and phiFA and the novel phage Tth15-6. Sequence and structural analysis of PolI_G20c revealed a 3'-5' exonuclease domain and a DNA polymerase domain, and activity screening confirmed that both domains were functional.
View Article and Find Full Text PDFAlginate (alginic acid) is a linear polysaccharide, wherein (1→4)-linked β-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1→4) glycosidic linkages between the monomers by a β-elimination mechanism, to yield unsaturated 4-deoxy-L--hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L- configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers.
View Article and Find Full Text PDFThe Virus-X-Viral Metagenomics for Innovation Value-project was a scientific expedition to explore and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit viral metagenomes with the ultimate goal of developing new gene products with high innovation value for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how viruses influence the evolution of microbes and multicellular organisms.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
November 2019
As part of the Virus-X Consortium that aims to identify and characterize novel proteins and enzymes from bacteriophages and archaeal viruses, the genes of the putative lytic proteins XepA from Bacillus subtilis prophage PBSX and YomS from prophage SPβ were cloned and the proteins were subsequently produced and functionally characterized. In order to elucidate the role and the molecular mechanism of XepA and YomS, the crystal structures of these proteins were solved at resolutions of 1.9 and 1.
View Article and Find Full Text PDFThe ganA gene from Bacillus subtilis encoding a β-galactosidase for degradation of the galactomannan was integrated in different loci of the B. subtilis chromosome employing the CRISPR/Cas9 system. Hereby a total of five copies of ganA cassettes in which the ganA gene was fused with the glucitol-promoter were inserted in the recipient chromosome wherein hypothetical, sporulation and protease genes were deleted.
View Article and Find Full Text PDFis a heterotrophic soil bacterium that hydrolyzes different polysaccharides mainly found in the decomposed plants. These carbohydrates are mainly cellulose, hemicellulose, and the raffinose family of oligosaccharides (RFOs). RFOs are soluble α-galactosides, such as raffinose, stachyose, and verbascose, that rank second only after sucrose in abundance.
View Article and Find Full Text PDFphosphorylates sugars during or after their transport into the cell. Perturbation in the conversion of intracellular phosphosugars to the central carbon metabolites and accumulation of phosphosugars can impose stress on the cells. In this study, we investigated the effect of phosphosugar stress on Preliminary experiments indicated that the nonmetabolizable analogs of glucose were unable to impose stress on In contrast, deletion of encoding mannose 6-phosphate isomerase (responsible for conversion of mannose 6-phosphate to fructose 6-phosphate) resulted in growth arrest and bulged cell shape in the medium containing mannose.
View Article and Find Full Text PDFThe activity of the endo-β-1,4-galactanase GanB from on the high molecular weight β-1,4-galactan was determined quantitatively by the measurement of the increase of the reducing power or with the dyed substrate Azo-galactan. The generated degradation products were analyzed using thinlayer-chromatography (TLC) or high-performance anion-exchange chromatography (HPAEC).
View Article and Find Full Text PDFGlycobiology
November 2016
Recently, we have shown that glycoside hydrolases enzymes of family GH17 from proteobacteria (genera Pseudomonas, Azotobacter) catalyze elongation transfer reactions with laminari-oligosaccharides generating (β1→3) linkages preferably and to a lesser extent (β1→6) or (β1→4) linkages. In the present study, the cloning and characterization of the gene encoding the structurally very similar GH17 domain of the NdvB enzyme from Bradyrhizobium diazoefficiens, designated Glt20, as well as its catalytic properties are described. The Glt20 enzyme was strikingly different from the previously investigated bacterial GH17 enzymes, both regarding substrate specificity and product formation.
View Article and Find Full Text PDFBacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR.
View Article and Find Full Text PDFMekB from Pseudomonas veronii and CgHle from Corynebacteriumglutamicum belong to the superfamily of α/β-hydrolase fold proteins. Based on sequence comparisons, they are annotated as homoserine transacetylases in popular databases like UNIPROT, PFAM or ESTHER. However, experimentally, MekB and CgHle were shown to be esterases that hydrolyse preferentially acetic acid esters.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2016
We developed a counterselectable deletion system for Thermus thermophilus HB27 based on cytosine deaminase (encoded by codA) from Thermaerobacter marianensis DSM 12885 and the sensitivity of T. thermophilus HB27 to the antimetabolite 5-fluorocytosine (5-FC). The deletion vector comprises the pUC18 origin of replication, a thermostable kanamycin resistance marker functional in T.
View Article and Find Full Text PDFBacillus subtilis is a widely used bacterium for production of heterologous and homologous proteins. The primary challenge in the production of proteins in B. subtilis is choosing a relevant expression system.
View Article and Find Full Text PDFCorynebacterium glutamicum is able to utilize vanillate, the product of lignin degradation, as the sole carbon source. The vanillate utilization components are encoded by the vanABK operon. The vanA and vanB genes encode the subunits of vanillate O-demethylase, converting vanillate to protocatechuate, while VanK is the specific vanillate transporter.
View Article and Find Full Text PDFThe gene encoding the amylolytic enzyme Amo45, originating from a metagenomic project, was retrieved by a consensus primer-based approach for glycoside hydrolase (GH) family 57 enzymes. Family 57 contains mainly uncharacterized proteins similar to archaeal thermoactive amylopullulanases. For characterization of these family members soluble, active enzymes have to be produced in sufficient amounts.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
February 2013
Sucrose isomerase is an enzyme that catalyzes the production of sucrose isomers of high biotechnological and pharmaceutical interest. Owing to the complexity of the chemical synthesis of these isomers, isomaltulose and trehalulose, enzymatic conversion remains the preferred method for obtaining these products. Depending on the microbial source, the ratio of the sucrose-isomer products varies significantly.
View Article and Find Full Text PDFThe α-galactosidase AgaA from the thermophilic microorganism Geobacillus stearothermophilus has great industrial potential because it is fully active at 338 K against raffinose and can increase the yield of manufactured sucrose. AgaB has lower affinity for its natural substrates but is a powerful tool for the enzymatic synthesis of disaccharides by transglycosylation. These two enzymes have 97% identity and belong to the glycoside hydrolase (GH) family GH36 for which few structures are available.
View Article and Find Full Text PDFThe naturally occurring structural isomer of sucrose, trehalulose, is produced by sucrose isomerase (SI). Screening of chromosomal DNA from "Pseudomonas mesoacidophila" MX-45 with an SI-specific probe facilitated the cloning of two adjacent gene homologs, mutA and mutB. Both genes were expressed separately in Escherichia coli, and their enzyme products were characterized.
View Article and Find Full Text PDFA mutagenesis approach was applied to the beta-galactosidase BgaB from Geobacillus stearothermophilus KVE39 in order to improve its enzymatic transglycosylation of lactose into oligosaccharides. A simple screening strategy, which was based on the reduction of the hydrolysis of a potential transglycosylation product (lactosucrose), provided mutant enzymes possessing improved synthetic properties for the autocondensation product from nitrophenyl-galactoside and galacto-oligosaccharides (GOS) from lactose. The effects of the mutations on enzyme activity and kinetics were determined.
View Article and Find Full Text PDFThe healthy sweetener isomaltulose is industrially produced from the conversion of sucrose by the sucrose isomerase SmuA from Protaminobacter rubrum. Crystal structures of SmuA in native and deoxynojirimycin complexed forms completed with modeling studies unravel the characteristics of the isomaltulose synthases catalytic pocket and their substrate binding mode. Comparison with the trehalulose synthase MutB highlights the role of Arg(298) and Arg(306) active site residues and surface charges in controlling product specificity of sucrose isomerases (isomaltulose versus trehalulose).
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
January 2009
CgHle is an enzyme that is encoded by gene cg0961 from Corynebacterium glutamicum. The physiological function of cgHle is so far unclear. Bioinformatic annotations based on sequence homology indicated that cgHle may be an acetyl-CoA:homoserine acetyl transferase and as such may be involved in methionine biosynthesis, but recent evidence has shown that it is an esterase that catalyzes the hydrolysis of acetyl esters.
View Article and Find Full Text PDFVarious diseases related to the overconsumption of sugar make a growing need for sugar substitutes. Because sucrose is an inexpensive and readily available d-glucose donor, the industrial potential for enzymatic synthesis of the sucrose isomers trehalulose and/or isomaltulose from sucrose is large. The product specificity of sucrose isomerases that catalyze this reaction depends essentially on the possibility for tautomerization of sucrose, which is required for trehalulose formation.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
January 2006
Palatinose (isomaltulose, alpha-D-glucosylpyranosyl-1,6-D-fructofuranose), a nutritional and acariogenic reducing sugar, is industrially obtained from sucrose by using immobilized cells of Protaminobacter rubrum that produce the sucrose isomerase SmuA. The isomerization of sucrose catalyzed by this enzyme also results in the formation of trehalulose (alpha-D-glucosylpyranosyl-1,1-D-fructofuranose) in smaller amounts and glucose, fructose and eventually isomaltose as by-products, which lower the yield of the reaction and complicate the recovery of palatinose. The determination of the three-dimensional structure of SmuA will provide a basis for rational protein-engineering studies in order to optimize the industrial production of palatinose.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
January 2005
The trehalulose synthase (MutB) from Pseudomonas mesoacidophila MX-45, belonging to glycoside hydrolase family 13, catalyses the isomerization of sucrose to trehalulose (alpha-D-glucosylpyranosyl-1,1-D-fructofuranose) and isomaltulose (alpha-D-glucosylpyranosyl-1,6-D-fructofuranose) as main products and glucose and fructose in residual amounts from the hydrolytic reaction. To date, a three-dimensional structure of a sucrose isomerase that produces mainly trehalulose, as is the case for MutB, has been lacking. Crystallographic studies of this 64 kDa enzyme have therefore been initiated in order to contribute to the understanding of the molecular basis of sucrose decomposition, isomerization and of the selectivity of this enzyme that leads to the formation of different products.
View Article and Find Full Text PDF