The U1 small nuclear RNA (U1 snRNA) as a component of the major U2-dependent spliceosome recognizes 5' splice sites (5'ss) containing GT as the canonical dinucleotide in the intronic positions +1 and +2. The c.165+1G>T germline mutation in the 5'ss of exon 2 of the Fanconi anemia C (FANCC) gene commonly predicted to prevent correct splicing was identified in nine FA patients from three pedigrees.
View Article and Find Full Text PDFFANCD2 is an evolutionarily conserved Fanconi anemia (FA) gene that plays a key role in DNA double-strand-type damage responses. Using complementation assays and immunoblotting, a consortium of American and European groups assigned 29 patients with FA from 23 families and 4 additional unrelated patients to complementation group FA-D2. This amounts to 3%-6% of FA-affected patients registered in various data sets.
View Article and Find Full Text PDFFanconi anemia is an inherited disease characterized by bone marrow failure, congenital malformations, and predisposition to cancer. The breast cancer susceptibility gene BRCA2 was recently found to be associated with Fanconi anemia complementation group D1 (FA-D1). We examined four kindreds afflicted with Fanconi anemia for the presence of germline BRCA2 mutations.
View Article and Find Full Text PDFFanconi anemia (FA) is a genetically heterogeneous autosomal recessive syndrome associated with chromosomal instability, hypersensitivity to DNA cross-linking agents, and predisposition to malignancy. The gene for FA complementation group G (FANCG) was the third FA gene to be cloned, and was found to be identical with human XRCC9, which maps to 9p13. The cDNA is predicted to encode a polypeptide of 622 amino acids, with no sequence similarities to any other known protein or motifs that could point to a molecular function for FANCG/XRCC9.
View Article and Find Full Text PDF